Files
stm32_rust/dma_gpio/src/software_uart/uart_emulation.rs
2025-11-05 14:45:36 +01:00

152 lines
3.8 KiB
Rust

// src/software_uart/uart_emulation.rs
use heapless::Vec;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Parity {
None,
Even,
Odd,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum StopBits {
One,
Two,
}
#[derive(Clone, Copy, Debug)]
pub struct UartConfig {
pub data_bits: u8,
pub parity: Parity,
pub stop_bits: StopBits,
}
impl Default for UartConfig {
fn default() -> Self {
Self {
data_bits: 8,
parity: Parity::None,
stop_bits: StopBits::One,
}
}
}
/// Encodes one byte into a sequence of GPIO BSRR words
pub fn encode_uart_byte_cfg(
pin_bit: u8,
data: u8,
cfg: &UartConfig,
out: &mut [u32; 12],
) -> usize {
// GPIOx_BSRR register str. 636 kap. 13.4.7
let set_high = |bit: u8| -> u32 { 1u32 << bit };
let set_low = |bit: u8| -> u32 { 0 };
// let set_low = |bit: u8| -> u32 { 1u32 << (bit as u32 + 16) };
let mut idx = 0usize;
// START bit (LOW)
out[idx] = set_low(pin_bit);
idx += 1;
// Data bits, LSB-first
let nbits = cfg.data_bits.clamp(5, 8);
for i in 0..nbits {
let one = ((data >> i) & 1) != 0;
out[idx] = if one { set_high(pin_bit) } else { set_low(pin_bit) };
idx += 1;
}
// Parity
match cfg.parity {
Parity::None => {}
Parity::Even | Parity::Odd => {
let mask: u8 = if nbits == 8 { 0xFF } else { (1u16 << nbits) as u8 - 1 };
let ones = (data & mask).count_ones() & 1;
let par_bit_is_one = match cfg.parity {
Parity::Even => ones == 1,
Parity::Odd => ones == 0,
_ => false,
};
out[idx] = if par_bit_is_one {
set_high(pin_bit)
} else {
set_low(pin_bit)
};
idx += 1;
}
}
// STOP bits (HIGH)
let stop_ticks = match cfg.stop_bits {
StopBits::One => 1usize,
StopBits::Two => 2usize,
};
for _ in 0..stop_ticks {
out[idx] = set_high(pin_bit);
idx += 1;
}
idx
}
/// Decode an oversampled stream of logic levels into UART bytes.
pub fn decode_uart_samples(
samples: &[u8],
oversample: u16,
cfg: &UartConfig,
) -> heapless::Vec<u8, 256> {
let mut out = Vec::<u8, 256>::new();
let mut idx = 0usize;
let nbits = cfg.data_bits as usize;
while idx + (oversample as usize * (nbits + 3)) < samples.len() {
// Wait for start bit (falling edge: high -> low)
if samples[idx] != 0 && samples[idx + 1] == 0 {
// Align to middle of start bit
idx += (oversample / 2) as usize;
// Sanity check start bit really low
if samples.get(idx).copied().unwrap_or(1) != 0 {
idx += 1;
continue;
}
// Sample data bits
let mut data: u8 = 0;
for bit in 0..nbits {
idx += oversample as usize;
let bit_val = samples
.get(idx)
.map(|&b| if b != 0 { 1u8 } else { 0u8 })
.unwrap_or(1);
data |= bit_val << bit;
}
// Parity: skip / verify
match cfg.parity {
Parity::None => {}
Parity::Even | Parity::Odd => {
idx += oversample as usize;
// You can optionally add parity check here if needed
}
}
// Move past stop bits
let stop_skip = match cfg.stop_bits {
StopBits::One => oversample as usize,
StopBits::Two => (oversample * 2) as usize,
};
idx += stop_skip;
// Push decoded byte
let _ = out.push(data);
} else {
idx += 1;
}
}
out
}