// src/bin/main.rs #![no_std] #![no_main] use defmt::*; use embassy_executor::Spawner; use embassy_time::{Instant, Timer, Duration}; use embassy_stm32::dma::Request; use embassy_stm32::gpio::{Input, Output, Level, Pull, Speed}; use dma_gpio::software_uart::{ dma_timer::{init_tim6_for_uart, init_tim7_for_uart}, gpio_dma_uart_rx::rx_dma_task, debug::dump_tim6_regs, }; use dma_gpio::config::{BAUD, RX_OVERSAMPLE, TX_OVERSAMPLE}; use dma_gpio::config::{TX_RING_BYTES, RX_RING_BYTES}; use dma_gpio::software_uart::gpio_dma_uart_tx::tx_dma_task; use static_cell::StaticCell; use embassy_futures::yield_now; use dma_gpio::hw_uart_pc::usart1; use dma_gpio::hw_uart_pc::driver::uart_task; use embassy_stm32::usart::{BufferedUart, Config, BufferedInterruptHandler}; use embassy_stm32::peripherals; use embassy_stm32::bind_interrupts; use dma_gpio::config::{PIPE_HW_TX, PIPE_HW_RX, PIPE_SW_TX, PIPE_SW_RX}; use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, pipe::Pipe}; use dma_gpio::hw_uart_internal::usart2; use dma_gpio::hw_uart_internal::driver::uart_task as uart_task_internal; use dma_gpio::config::{PIPE_INT_TX, PIPE_INT_RX}; use {defmt_rtt as _, panic_probe as _}; bind_interrupts!(struct Irqs { USART1 => BufferedInterruptHandler; }); bind_interrupts!(struct Irqs2 { USART2 => BufferedInterruptHandler; }); // Software uart pub const TIM6_UP_REQ: Request = 4; static SW_TX_RING: StaticCell<[u32; TX_RING_BYTES]> = StaticCell::new(); static SW_RX_RING: StaticCell<[u8; RX_RING_BYTES]> = StaticCell::new(); #[embassy_executor::main] async fn main(spawner: Spawner) { info!("boot"); let p = embassy_stm32::init(Default::default()); info!("init m8"); // HARDWARE UART to the PC let mut cfg = Config::default(); cfg.baudrate = BAUD; static TX_BUF: StaticCell<[u8; 256]> = StaticCell::new(); static RX_BUF: StaticCell<[u8; 256]> = StaticCell::new(); let uart = BufferedUart::new( p.USART1, p.PA10, // RX pin p.PA9, // TX pin TX_BUF.init([0; 256]), RX_BUF.init([0; 256]), Irqs, cfg, ).unwrap(); let yield_period = usart1::setup_and_spawn(BAUD); spawner.spawn(uart_task(uart, &PIPE_HW_TX, &PIPE_HW_RX).unwrap()); // END OF HARDWARE UART to the PC // INTERNAL HARDWARE UART (USART2) let mut cfg2 = Config::default(); cfg2.baudrate = BAUD; static TX_BUF2: StaticCell<[u8; 256]> = StaticCell::new(); static RX_BUF2: StaticCell<[u8; 256]> = StaticCell::new(); let uart2 = BufferedUart::new( p.USART2, p.PD6, // RX p.PA2, // TX TX_BUF2.init([0; 256]), RX_BUF2.init([0; 256]), Irqs2, cfg2, ).unwrap(); let _ = usart2::setup_and_spawn(BAUD); spawner.spawn(uart_task_internal(uart2, &PIPE_INT_TX, &PIPE_INT_RX).unwrap()); info!("USART2 ready"); // END OF INTERNAL HARDWARE UART (USART2) // USART1 <-> USART2 bridge spawner.spawn(bridge_usart1_rx_to_usart2_tx(&PIPE_HW_RX, &PIPE_INT_TX).unwrap()); spawner.spawn(bridge_usart2_rx_to_usart1_tx(&PIPE_INT_RX, &PIPE_HW_TX).unwrap()); info!("USART1 <-> USART2 bridge active"); // END OF USART1 <-> USART2 bridge // SOFTWARE UART let tx = Output::new(p.PB0, Level::High, Speed::VeryHigh); init_tim6_for_uart(p.TIM6, BAUD, TX_OVERSAMPLE); dump_tim6_regs(); // Safe one-time init from StaticCell let sw_tx_ring: &mut [u32; TX_RING_BYTES] = SW_TX_RING.init([0; TX_RING_BYTES]); let bsrr_ptr = embassy_stm32::pac::GPIOB.bsrr().as_ptr() as *mut u32; // POZOR B REGISTER // let odr_ptr = embassy_stm32::pac::GPIOA.odr().as_ptr() as *mut u32; // NEEDS DECODE CHANGE // spawner.spawn(tx_dma_task(p.GPDMA1_CH0, bsrr_ptr, sw_tx_ring, &PIPE_SW_TX).unwrap()); spawner.spawn(tx_cpu_task(bsrr_ptr, p.TIM6, &PIPE_SW_TX)).unwrap(); // EDN OF SOFTWARE UART let mut last_yield = Instant::now(); let mut buf = [0u8; 32]; let mut counter: u32 = 0; loop { info!("tick start"); // Timer::after(Duration::from_millis(100)).await; // info!("tick end"); let n = PIPE_SW_TX.read(&mut buf).await; if n > 0 { for &byte in &buf[..n] { send_byte_cpu(&tx_pin, p.TIM6, byte).await; } } counter += 1; let msg = if counter % 2 == 0 { b"AAAAA\n" } else { b"Hello\n" }; PIPE_SW_TX.write(msg).await; info!("Sent: {:a}", msg); Timer::after(Duration::from_secs(3)).await; // Also read any incoming data from SW RX pipe let n2 = PIPE_INT_RX.read(&mut buf).await; if n2 > 0 { info!("HW INT UART RX pipe: {:a}", &buf[..n2]); } yield_now().await; } } #[embassy_executor::task] pub async fn bridge_usart1_rx_to_usart2_tx( usart1_rx: &'static Pipe, usart2_tx: &'static Pipe, ) { let mut buf = [0u8; 64]; loop { let n = usart1_rx.read(&mut buf).await; if n > 0 { let _ = usart2_tx.write(&buf[..n]).await; info!("bridge: USART1 -> USART2 sent {} bytes", n); } } } #[embassy_executor::task] pub async fn bridge_usart2_rx_to_usart1_tx( usart2_rx: &'static Pipe, usart1_tx: &'static Pipe, ) { let mut buf = [0u8; 64]; loop { let n = usart2_rx.read(&mut buf).await; if n > 0 { let _ = usart1_tx.write(&buf[..n]).await; info!("bridge: USART2 -> USART1 sent {} bytes", n); } } } #[embassy_executor::task] pub async fn tx_cpu_task( bsrr_ptr: *mut u32, tim6: embassy_stm32::peripherals::TIM6, pipe_tx: &'static embassy_sync::pipe::Pipe, ) { use dma_gpio::config::TX_PIN_BIT; use dma_gpio::software_uart::uart_emulation::{encode_uart_byte_cfg, UART_CFG}; let tim6_regs = unsafe { &*embassy_stm32::pac::TIM6::ptr() }; let mut rx_buf = [0u8; 256]; let mut frame_buf = [0u32; 32]; let mut wait_tick = || async { loop { if tim6_regs.sr().read() & 1 != 0 { tim6_regs.sr().write(|w| w & !1); break; } embassy_futures::yield_now().await; } }; loop { let n = pipe_tx.read(&mut rx_buf).await; if n == 0 { embassy_futures::yield_now().await; continue; } for &byte in &rx_buf[..n] { let used = encode_uart_byte_cfg(TX_PIN_BIT, byte, &UART_CFG, &mut frame_buf); for word in &frame_buf[..used] { unsafe { core::ptr::write_volatile(bsrr_ptr, *word) }; wait_tick().await; } } } }