working buffered hardware uart from previous project is now on

This commit is contained in:
Priec
2025-11-29 19:30:13 +01:00
parent 9c7f67b071
commit f7063f877d
7 changed files with 158 additions and 0 deletions

View File

@@ -5,8 +5,20 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_futures::yield_now;
use embassy_stm32::bind_interrupts;
use embassy_stm32::peripherals;
use embassy_stm32::usart::{BufferedUart, Config, BufferedInterruptHandler};
use static_cell::StaticCell;
use dma_gpio::config::{
BAUD, PIPE_HW_RX, PIPE_HW_TX,
};
use dma_gpio::hw_uart_pc::{driver::uart_task, usart1};
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
USART1 => BufferedInterruptHandler<peripherals::USART1>;
});
#[embassy_executor::main]
async fn main(spawner: Spawner) {
@@ -14,6 +26,24 @@ async fn main(spawner: Spawner) {
let p = embassy_stm32::init(Default::default());
info!("init m8");
// HARDWARE UART to the PC
let mut cfg = Config::default();
cfg.baudrate = BAUD;
static TX_BUF: StaticCell<[u8; 256]> = StaticCell::new();
static RX_BUF: StaticCell<[u8; 256]> = StaticCell::new();
let uart = BufferedUart::new(
p.USART1,
p.PA10, // RX pin
p.PA9, // TX pin
TX_BUF.init([0; 256]),
RX_BUF.init([0; 256]),
Irqs,
cfg,
).unwrap();
// let yield_period = usart1::setup_and_spawn(BAUD);
spawner.spawn(uart_task(uart, &PIPE_HW_TX, &PIPE_HW_RX).unwrap());
// END OF HARDWARE UART to the PC
loop {
info!("tick start");
// Timer::after(Duration::from_millis(100)).await;

View File

@@ -0,0 +1,10 @@
// src/config.rs
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::pipe::Pipe;
pub const BAUD: u32 = 9_600;
pub const PIPE_HW_TX_SIZE: usize = 1024;
pub const PIPE_HW_RX_SIZE: usize = 1024;
pub static PIPE_HW_TX: Pipe<CriticalSectionRawMutex, PIPE_HW_TX_SIZE> = Pipe::new();
pub static PIPE_HW_RX: Pipe<CriticalSectionRawMutex, PIPE_HW_RX_SIZE> = Pipe::new();

View File

@@ -0,0 +1,41 @@
// src/hw_uart_pc/driver.rs
use defmt::unwrap;
use embassy_futures::select::{select, Either};
use embassy_stm32::usart::BufferedUart;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::pipe::Pipe;
use embedded_io_async::{Read, Write};
use crate::hw_uart_pc::safety::{RX_PIPE_CAP, TX_PIPE_CAP};
use embassy_futures::yield_now;
#[embassy_executor::task]
pub async fn uart_task(
mut uart: BufferedUart<'static>,
tx_pipe: &'static Pipe<CriticalSectionRawMutex, TX_PIPE_CAP>,
rx_pipe: &'static Pipe<CriticalSectionRawMutex, RX_PIPE_CAP>,
) {
let mut rx_byte = [0u8; 1];
let mut tx_buf = [0u8; 64];
loop {
let rx_fut = uart.read(&mut rx_byte);
let tx_fut = async {
let n = tx_pipe.read(&mut tx_buf).await;
n
};
match select(rx_fut, tx_fut).await {
// Incoming data from UART hardware
Either::First(res) => {
if let Ok(_) = res {
let _ = rx_pipe.write(&rx_byte).await;
}
}
// Outgoing data waiting in TX pipe
Either::Second(n) => {
unwrap!(uart.write(&tx_buf[..n]).await);
}
}
yield_now().await;
}
}

View File

@@ -0,0 +1,4 @@
// src/hw_uart_pc/mod.rs
pub mod driver;
pub mod usart1;
pub mod safety;

View File

@@ -0,0 +1,57 @@
// src/safety.rs
use defmt::info;
use embassy_time::Duration;
// ISR RX ring capacity = RX_BUF len
const ISR_RX_BUF_CAP: usize = 256;
// Yield 1/2 the time it takes to fill ISR RX ring.
const YIELD_MARGIN_NUM: u32 = 1;
const YIELD_MARGIN_DEN: u32 = 2;
// Ensure RX_PIPE_CAP can hold this.
const WORST_MAIN_LATENCY_MS: u32 = 20;
pub const TX_PIPE_CAP: usize = 1024;
pub const RX_PIPE_CAP: usize = 1024;
/// Perform safety checks and compute yield timing to avoid buffer overflow.
///
/// # Panics
/// Panics if pipe capacities are too small for the configured baud.
pub fn preflight_and_suggest_yield_period(baud: u32) -> Duration {
// Approx bytes per second for 8N1 (10 bits per byte on the wire)
let bytes_per_sec = (baud / 10).max(1);
// Time until ISR RX ring fills, in microseconds.
let t_fill_us = (ISR_RX_BUF_CAP as u64) * 1_000_000u64 / (bytes_per_sec as u64);
// Choose a yield period as a fraction of t_fill.
let yield_us = (t_fill_us as u64)
.saturating_mul(YIELD_MARGIN_NUM as u64)
/ (YIELD_MARGIN_DEN as u64);
// Verify RX pipe can absorb a worst-case app latency so uart_task
// can always forward without dropping when it runs.
let required_rx_pipe = (bytes_per_sec as u64) * (WORST_MAIN_LATENCY_MS as u64) / 1000;
if (RX_PIPE_CAP as u64) < required_rx_pipe {
core::panic!(
"RX pipe too small: have {}B, need >= {}B for {}ms at {} bps",
RX_PIPE_CAP, required_rx_pipe, WORST_MAIN_LATENCY_MS, baud
);
}
info!(
"Preflight: baud={}, rx_isr={}B, rx_pipe={}B, bytes/s={}, t_fill_us={}, yield_us={}",
baud,
ISR_RX_BUF_CAP,
RX_PIPE_CAP,
bytes_per_sec,
t_fill_us,
yield_us
);
// Never choose zero.
Duration::from_micros(yield_us.max(1) as u64)
}

View File

@@ -0,0 +1,12 @@
// src/uart/usart1.rs
use defmt::info;
use embassy_time::Duration;
use crate::hw_uart_pc::safety::preflight_and_suggest_yield_period;
pub fn setup_and_spawn(baudrate: u32,) -> Duration {
let yield_period: Duration = preflight_and_suggest_yield_period(baudrate);
info!("HW USART1 safe");
yield_period
}

View File

@@ -1,2 +1,6 @@
#![no_std]
// pub mod low_power;
// pub use low_power::*;
pub mod hw_uart_pc;
pub mod config;