timer HAL
This commit is contained in:
@@ -2,18 +2,16 @@
|
|||||||
|
|
||||||
use embassy_stm32::{
|
use embassy_stm32::{
|
||||||
peripherals::{TIM6, TIM7},
|
peripherals::{TIM6, TIM7},
|
||||||
rcc,
|
|
||||||
timer::low_level::Timer,
|
timer::low_level::Timer,
|
||||||
Peri,
|
Peri,
|
||||||
|
time::Hertz,
|
||||||
};
|
};
|
||||||
use core::mem;
|
use core::mem;
|
||||||
use embassy_stm32::timer::BasicInstance;
|
use embassy_stm32::timer::BasicInstance;
|
||||||
use embassy_stm32::pac::timer::vals::Urs;
|
|
||||||
|
|
||||||
/// Initializes TIM6 to tick at `baud * oversample` frequency.
|
/// Initializes TIM6 to tick at `baud * oversample` frequency.
|
||||||
/// Each TIM6 update event triggers one DMA beat.
|
/// Each TIM6 update event triggers one DMA beat.
|
||||||
pub fn init_tim6_for_uart<'d>(tim6: Peri<'d, TIM6>, baud: u32, oversample: u16) {
|
pub fn init_tim6_for_uart<'d>(tim6: Peri<'d, TIM6>, baud: u32, oversample: u16) {
|
||||||
rcc::enable_and_reset::<TIM6>();
|
|
||||||
let ll = Timer::new(tim6);
|
let ll = Timer::new(tim6);
|
||||||
configure_basic_timer(&ll, baud, oversample);
|
configure_basic_timer(&ll, baud, oversample);
|
||||||
mem::forget(ll);
|
mem::forget(ll);
|
||||||
@@ -22,46 +20,20 @@ pub fn init_tim6_for_uart<'d>(tim6: Peri<'d, TIM6>, baud: u32, oversample: u16)
|
|||||||
/// Initializes TIM7 to tick at `baud * oversample` frequency.
|
/// Initializes TIM7 to tick at `baud * oversample` frequency.
|
||||||
/// Each TIM7 update event triggers one DMA beat.
|
/// Each TIM7 update event triggers one DMA beat.
|
||||||
pub fn init_tim7_for_uart<'d>(tim7: Peri<'d, TIM7>, baud: u32, oversample: u16) {
|
pub fn init_tim7_for_uart<'d>(tim7: Peri<'d, TIM7>, baud: u32, oversample: u16) {
|
||||||
rcc::enable_and_reset::<TIM7>();
|
|
||||||
let ll = Timer::new(tim7);
|
let ll = Timer::new(tim7);
|
||||||
configure_basic_timer(&ll, baud, oversample);
|
configure_basic_timer(&ll, baud, oversample);
|
||||||
// Enable Update Interrupt (UIE)
|
ll.enable_update_interrupt(false); //Disable CPU interrupts
|
||||||
ll.regs_basic().dier().modify(|w| {
|
|
||||||
w.set_ude(true);
|
|
||||||
w.set_uie(false);
|
|
||||||
});
|
|
||||||
mem::forget(ll);
|
mem::forget(ll);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Shared internal helper — identical CR1/ARR setup
|
|
||||||
fn configure_basic_timer<T: BasicInstance>(ll: &Timer<'_, T>, baud: u32, oversample: u16) {
|
fn configure_basic_timer<T: BasicInstance>(ll: &Timer<'_, T>, baud: u32, oversample: u16) {
|
||||||
let f_timer = rcc::frequency::<T>().0;
|
|
||||||
let target = baud.saturating_mul(oversample.max(1) as u32).max(1);
|
let target = baud.saturating_mul(oversample.max(1) as u32).max(1);
|
||||||
|
let target_freq = Hertz(target);
|
||||||
|
|
||||||
// Compute ARR (prescaler = 0)
|
ll.stop();
|
||||||
// let mut arr = (f_timer / target).saturating_sub(1) as u16;
|
ll.set_frequency(target_freq);
|
||||||
let mut arr = ((f_timer + target / 2) / target).saturating_sub(1) as u16;
|
ll.enable_update_dma(true);
|
||||||
if arr == 0 { arr = 1; }
|
|
||||||
|
|
||||||
ll.regs_basic().cr1().write(|w| {
|
ll.clear_update_interrupt();
|
||||||
w.set_cen(false);
|
ll.start();
|
||||||
w.set_opm(false);
|
|
||||||
w.set_udis(false);
|
|
||||||
w.set_urs(Urs::ANY_EVENT);
|
|
||||||
});
|
|
||||||
|
|
||||||
ll.regs_basic().psc().write_value(0u16);
|
|
||||||
ll.regs_basic().arr().write(|w| w.set_arr(arr));
|
|
||||||
ll.regs_basic().dier().modify(|w| w.set_ude(true));
|
|
||||||
ll.regs_basic().egr().write(|w| w.set_ug(true));
|
|
||||||
|
|
||||||
// Clear spurious UIF from UG trigger
|
|
||||||
ll.regs_basic().sr().modify(|w| w.set_uif(false));
|
|
||||||
|
|
||||||
ll.regs_basic().cr1().write(|w| {
|
|
||||||
w.set_opm(false);
|
|
||||||
w.set_cen(true);
|
|
||||||
w.set_udis(false);
|
|
||||||
w.set_urs(Urs::ANY_EVENT);
|
|
||||||
});
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
// src/runtime.rs
|
// src/gpio_dma_uart_rx.rs
|
||||||
|
|
||||||
use embassy_executor::task;
|
use embassy_executor::task;
|
||||||
use embassy_stm32::{
|
use embassy_stm32::{
|
||||||
@@ -46,12 +46,10 @@ pub async fn rx_dma_task(
|
|||||||
};
|
};
|
||||||
rx.start();
|
rx.start();
|
||||||
|
|
||||||
// We read into the second half of a buffer, keeping "leftovers" in the first half.
|
|
||||||
const CHUNK_SIZE: usize = 4096;
|
const CHUNK_SIZE: usize = 4096;
|
||||||
const HISTORY_SIZE: usize = 512;
|
const HISTORY_SIZE: usize = 512;
|
||||||
const TOTAL_BUF_SIZE: usize = HISTORY_SIZE + CHUNK_SIZE;
|
const TOTAL_BUF_SIZE: usize = HISTORY_SIZE + CHUNK_SIZE;
|
||||||
|
|
||||||
// Logic level buffer
|
|
||||||
let mut level_buf = [0u8; TOTAL_BUF_SIZE];
|
let mut level_buf = [0u8; TOTAL_BUF_SIZE];
|
||||||
let mut valid_len = 0usize;
|
let mut valid_len = 0usize;
|
||||||
|
|
||||||
@@ -60,6 +58,7 @@ pub async fn rx_dma_task(
|
|||||||
loop {
|
loop {
|
||||||
let _ = rx.read_exact(&mut raw_chunk).await;
|
let _ = rx.read_exact(&mut raw_chunk).await;
|
||||||
|
|
||||||
|
// Extract Rx pin value from IDR
|
||||||
for (i, b) in raw_chunk.iter().enumerate() {
|
for (i, b) in raw_chunk.iter().enumerate() {
|
||||||
level_buf[valid_len + i] = ((*b >> rx_pin_bit) & 1) as u8;
|
level_buf[valid_len + i] = ((*b >> rx_pin_bit) & 1) as u8;
|
||||||
}
|
}
|
||||||
@@ -74,27 +73,23 @@ pub async fn rx_dma_task(
|
|||||||
if !decoded.is_empty() {
|
if !decoded.is_empty() {
|
||||||
pipe_rx.write(decoded.as_slice()).await;
|
pipe_rx.write(decoded.as_slice()).await;
|
||||||
|
|
||||||
for byte in decoded.as_slice() {
|
// for byte in decoded.as_slice() {
|
||||||
// info!("DMA BUFFER CHAR: {} (ASCII: {})", *byte, *byte as char);
|
// info!("DMA BUFFER CHAR: {} (ASCII: {})", *byte, *byte as char);
|
||||||
}
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
// Shift remaining data to front
|
// Shift remaining data to front
|
||||||
// We processed 'consumed' samples.
|
// We processed 'consumed' samples.
|
||||||
// We keep everything from 'consumed' up to 'current_end'.
|
// Keeping the rest of the data
|
||||||
let remaining = current_end - consumed;
|
let remaining = current_end - consumed;
|
||||||
|
|
||||||
// SAFETY if remaining > HISTORY_SIZE, we are in trouble (buffer too small / decoder stuck).
|
|
||||||
if remaining > 0 {
|
if remaining > 0 {
|
||||||
level_buf.copy_within(consumed..current_end, 0);
|
level_buf.copy_within(consumed..current_end, 0);
|
||||||
}
|
}
|
||||||
valid_len = remaining;
|
valid_len = remaining;
|
||||||
|
|
||||||
// If valid_len grows too large (decoder not consuming), we must discard to avoid panic on next write
|
// SAFETY if decoder is stuck and buffer is filling up, discard old data
|
||||||
if valid_len >= HISTORY_SIZE {
|
if valid_len >= HISTORY_SIZE {
|
||||||
// Discard oldest to make space
|
|
||||||
// logic: we move the last (HISTORY_SIZE/2) to 0.
|
|
||||||
// This effectively "skips" garbage data.
|
|
||||||
let keep = HISTORY_SIZE / 2;
|
let keep = HISTORY_SIZE / 2;
|
||||||
level_buf.copy_within(valid_len - keep..valid_len, 0);
|
level_buf.copy_within(valid_len - keep..valid_len, 0);
|
||||||
valid_len = keep;
|
valid_len = keep;
|
||||||
|
|||||||
@@ -19,10 +19,8 @@ pub async fn encode_uart_frames<'a>(
|
|||||||
pin_bit: u8,
|
pin_bit: u8,
|
||||||
bytes: &[u8],
|
bytes: &[u8],
|
||||||
out_buf: &'a mut [u32],
|
out_buf: &'a mut [u32],
|
||||||
uart_cfg: &mut UartConfig,
|
uart_cfg: &UartConfig,
|
||||||
) -> usize {
|
) -> usize {
|
||||||
uart_cfg.validity_check(); // clamping to min 5 bits
|
|
||||||
|
|
||||||
let mut offset = 0;
|
let mut offset = 0;
|
||||||
for &b in bytes {
|
for &b in bytes {
|
||||||
let mut frame = [0u32; 12];
|
let mut frame = [0u32; 12];
|
||||||
@@ -44,13 +42,12 @@ pub async fn encode_uart_frames<'a>(
|
|||||||
pub async fn tx_dma_task(
|
pub async fn tx_dma_task(
|
||||||
mut ch: Peri<'static, GPDMA1_CH0>,
|
mut ch: Peri<'static, GPDMA1_CH0>,
|
||||||
register: *mut u32, // GPIOx_BSRR
|
register: *mut u32, // GPIOx_BSRR
|
||||||
_tx_ring_mem: &'static mut [u32],
|
tx_ring_mem: &'static mut [u32],
|
||||||
pipe_rx: &'static Pipe<CriticalSectionRawMutex, 1024>,
|
pipe_rx: &'static Pipe<CriticalSectionRawMutex, 1024>,
|
||||||
tx_pin_bit: u8,
|
tx_pin_bit: u8,
|
||||||
uart_cfg: &'static mut UartConfig,
|
uart_cfg: &'static UartConfig,
|
||||||
) {
|
) {
|
||||||
info!("TX DMA task ready (One‑shot)");
|
info!("TX DMA task ready (One‑shot)");
|
||||||
|
|
||||||
let mut frame_buf = [0u32; 4096];
|
let mut frame_buf = [0u32; 4096];
|
||||||
let mut rx_buf = [0u8; 256];
|
let mut rx_buf = [0u8; 256];
|
||||||
let tim6 = embassy_stm32::pac::TIM6;
|
let tim6 = embassy_stm32::pac::TIM6;
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
// src/uart_emulation.rs
|
// src/uart_emulation.rs
|
||||||
|
|
||||||
use heapless::Vec;
|
use heapless::Vec;
|
||||||
|
|
||||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||||
@@ -31,18 +32,6 @@ impl Default for UartConfig {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl UartConfig {
|
|
||||||
pub fn validity_check(&mut self) {
|
|
||||||
if self.data_bits < 5 {
|
|
||||||
defmt::warn!(
|
|
||||||
"Invalid UART data_bits={} – clamping to minimum 5 bits.",
|
|
||||||
self.data_bits
|
|
||||||
);
|
|
||||||
self.data_bits = 5;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Encodes one byte into a sequence of GPIO BSRR words
|
/// Encodes one byte into a sequence of GPIO BSRR words
|
||||||
pub fn encode_uart_byte_cfg(
|
pub fn encode_uart_byte_cfg(
|
||||||
pin_bit: u8,
|
pin_bit: u8,
|
||||||
@@ -148,14 +137,11 @@ pub fn decode_uart_samples(
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
// Loop while we have enough remaining samples for a full frame
|
// Decode while remaining samples for a full frame
|
||||||
while idx + frame_len <= samples.len() {
|
while idx + frame_len <= samples.len() {
|
||||||
// Wait for falling edge (High -> Low)
|
// Start - idle HIGH to start LOW
|
||||||
// samples[idx] == 1 (Idle/Stop) && samples[idx+1] == 0 (Start)
|
|
||||||
if samples[idx] != 0 && samples[idx + 1] == 0 {
|
if samples[idx] != 0 && samples[idx + 1] == 0 {
|
||||||
// Align to center of START bit
|
let center_offset = ovs / 2;
|
||||||
// Start bit begins at idx+1. Center is at idx + 1 + (ovs/2)
|
|
||||||
let center_offset = 1 + (ovs / 2);
|
|
||||||
let mut scan_idx = idx + center_offset;
|
let mut scan_idx = idx + center_offset;
|
||||||
|
|
||||||
// Validate Start Bit
|
// Validate Start Bit
|
||||||
@@ -176,33 +162,39 @@ pub fn decode_uart_samples(
|
|||||||
scan_idx += ovs;
|
scan_idx += ovs;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Skip Parity
|
let mut error_data = false;
|
||||||
if cfg.parity != Parity::None {
|
if cfg.parity != Parity::None {
|
||||||
|
let expected_parity = calculate_parity(data, cfg.parity, cfg.data_bits);
|
||||||
|
let actual_parity = get_bit(scan_idx);
|
||||||
|
if expected_parity != actual_parity {
|
||||||
|
// Parity error
|
||||||
|
error_data = true;
|
||||||
|
}
|
||||||
scan_idx += ovs;
|
scan_idx += ovs;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Validate Stop Bit (Must be 1)
|
for _ in 0..stop_bits_count {
|
||||||
// If stop bit is 0, it's a framing error. We reject the whole byte.
|
|
||||||
if get_bit(scan_idx) == 0 {
|
if get_bit(scan_idx) == 0 {
|
||||||
idx += 1; // Next sample
|
// Framing error
|
||||||
continue;
|
error_data = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
scan_idx += ovs;
|
||||||
|
}
|
||||||
|
if error_data {
|
||||||
|
idx += 1;
|
||||||
|
continue; // Skip this frame completely
|
||||||
}
|
}
|
||||||
|
|
||||||
// Byte is valid
|
|
||||||
let _ = out.push(data);
|
let _ = out.push(data);
|
||||||
|
|
||||||
// Active Resync: Fast-forward through the stop bit(s) and idle time
|
|
||||||
// scan_idx is currently at the center of the Stop bit.
|
|
||||||
idx = scan_idx;
|
idx = scan_idx;
|
||||||
// Advance while we are reading High (1).
|
|
||||||
// As soon as we see Low (0), we stop. That 0 is the beginning of the NEXT start bit.
|
// Next startbit reach
|
||||||
// The outer loop expects `idx` to be the High *before* the start bit, so we will handle that.
|
|
||||||
while idx < samples.len() && samples[idx] != 0 {
|
while idx < samples.len() && samples[idx] != 0 {
|
||||||
idx += 1;
|
idx += 1;
|
||||||
}
|
}
|
||||||
// Back up one step.
|
|
||||||
// The outer loop logic is: `if samples[idx] != 0 && samples[idx+1] == 0`.
|
// Mensi hack
|
||||||
// If we stopped at `idx` because it was 0, then `idx-1` was the last 1 (Idle).
|
|
||||||
if idx > 0 {
|
if idx > 0 {
|
||||||
idx -= 1;
|
idx -= 1;
|
||||||
}
|
}
|
||||||
@@ -214,3 +206,21 @@ pub fn decode_uart_samples(
|
|||||||
|
|
||||||
(out, idx)
|
(out, idx)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Calculate the expected parity bit (0 or 1) for the given data and parity mode
|
||||||
|
fn calculate_parity(data: u8, parity: Parity, data_bits: u8) -> u8 {
|
||||||
|
match parity {
|
||||||
|
Parity::None => 0,
|
||||||
|
Parity::Even | Parity::Odd => {
|
||||||
|
// Mask to only count bits that are part of the data
|
||||||
|
let mask: u8 = if data_bits == 8 { 0xFF } else { ((1u16 << data_bits) - 1) as u8 };
|
||||||
|
|
||||||
|
let ones = (data & mask).count_ones() & 1;
|
||||||
|
match parity {
|
||||||
|
Parity::Even => ones as u8, // If ones=1 (odd), emit 1 to make even
|
||||||
|
Parity::Odd => (ones ^ 1) as u8, // XOR - If ones=1 (odd), emit 0 to keep odd
|
||||||
|
_ => 0,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user