software uart is now a library

This commit is contained in:
Priec
2025-11-23 15:48:54 +01:00
parent 685067a75f
commit 4097ce1c7a
28 changed files with 4450 additions and 0 deletions

View File

@@ -0,0 +1,190 @@
// src/bin/main.rs
#![no_std]
#![no_main]
use defmt::*;
use core::cell::RefCell;
use cortex_m::interrupt::Mutex;
use embassy_executor::Spawner;
use embassy_futures::yield_now;
use embassy_sync::{
blocking_mutex::raw::CriticalSectionRawMutex,
channel::Channel,
pipe::Pipe,
};
use embassy_time::{Duration, Instant, Timer};
use embassy_stm32::{
bind_interrupts,
dma::Request,
gpio::{Input, Level, Output, Pull, Speed},
interrupt,
pac,
peripherals,
rcc::{self, Pll, PllDiv, PllMul, PllPreDiv, PllSource, Sysclk},
usart::{BufferedInterruptHandler, BufferedUart, Config},
Config as CPUConfig,
};
use static_cell::StaticCell;
use dma_gpio::config::{
BAUD, PIPE_HW_RX, PIPE_HW_TX, PIPE_INT_RX, PIPE_INT_TX, PIPE_SW_RX,
PIPE_SW_TX, RX_OVERSAMPLE, RX_RING_BYTES, TX_OVERSAMPLE, TX_RING_BYTES,
UART_CFG,
};
use dma_gpio::hw_uart_pc::{driver::uart_task, usart1};
use dma_gpio::hw_uart_internal::{
driver::uart_task as uart_task_internal,
usart2,
};
use dma_gpio::software_uart::{
debug::dump_tim6_regs,
decode_uart_samples,
dma_timer::{init_tim6_for_uart, init_tim7_for_uart},
gpio_dma_uart_rx::rx_dma_task,
gpio_dma_uart_tx::tx_dma_task,
};
use {defmt_rtt as _, panic_probe as _};
static PD6_BITS: Channel<CriticalSectionRawMutex, u8, 16384> = Channel::new();
bind_interrupts!(struct Irqs {
USART1 => BufferedInterruptHandler<peripherals::USART1>;
});
bind_interrupts!(struct Irqs2 {
USART2 => BufferedInterruptHandler<peripherals::USART2>;
});
// Software uart
pub const TIM6_UP_REQ: Request = 4;
static SW_TX_RING: StaticCell<[u32; TX_RING_BYTES]> = StaticCell::new();
static SW_RX_RING: StaticCell<[u8; RX_RING_BYTES]> = StaticCell::new();
static mut RX_PIN: Option<Input<'static>> = None;
#[embassy_executor::main]
async fn main(spawner: Spawner) {
info!("boot");
let mut config = CPUConfig::default();
config.rcc.hsi = true;
config.rcc.sys = Sysclk::PLL1_R;
config.rcc.pll1 = Some(Pll {
source: PllSource::HSI,
// 16 MHz / 1 × 20 / 2 = 160 MHz
prediv: PllPreDiv::DIV1,
mul: PllMul::MUL20,
divp: None,
divq: None,
divr: Some(PllDiv::DIV2),
});
config.enable_independent_io_supply = true;
config.enable_independent_analog_supply = true;
let p = embassy_stm32::init(config);
let f_tim7 = rcc::frequency::<embassy_stm32::peripherals::TIM7>().0;
info!("TIM7 clock after PLL config = {} Hz", f_tim7);
let f_tim6 = rcc::frequency::<embassy_stm32::peripherals::TIM6>().0;
info!("TIM6 clock after PLL config = {} Hz", f_tim6);
// HARDWARE UART to the PC
let mut cfg = Config::default();
cfg.baudrate = BAUD;
static TX_BUF: StaticCell<[u8; 256]> = StaticCell::new();
static RX_BUF: StaticCell<[u8; 256]> = StaticCell::new();
let uart = BufferedUart::new(
p.USART1,
p.PA10, // RX pin
p.PA9, // TX pin
TX_BUF.init([0; 256]),
RX_BUF.init([0; 256]),
Irqs,
cfg,
).unwrap();
let yield_period = usart1::setup_and_spawn(BAUD);
spawner.spawn(uart_task(uart, &PIPE_HW_TX, &PIPE_HW_RX).unwrap());
// END OF HARDWARE UART to the PC
// INTERNAL HARDWARE UART (USART2)
let mut cfg2 = Config::default();
cfg2.baudrate = BAUD;
static TX_BUF2: StaticCell<[u8; 256]> = StaticCell::new();
static RX_BUF2: StaticCell<[u8; 256]> = StaticCell::new();
let uart2 = BufferedUart::new(
p.USART2,
p.PA3, // RX
p.PA2, // TX
TX_BUF2.init([0; 256]),
RX_BUF2.init([0; 256]),
Irqs2,
cfg2,
).unwrap();
let yield_period2 = usart2::setup_and_spawn(BAUD);
spawner.spawn(uart_task_internal(uart2, &PIPE_INT_TX, &PIPE_INT_RX).unwrap());
info!("USART2 ready");
// END OF INTERNAL HARDWARE UART (USART2)
// USART1 <-> USART2 bridge
spawner.spawn(bridge_usart1_rx_to_usart2_tx(&PIPE_HW_RX, &PIPE_INT_TX).unwrap());
spawner.spawn(bridge_usart2_rx_to_usart1_tx(&PIPE_INT_RX, &PIPE_HW_TX).unwrap());
info!("USART1 <-> USART2 bridge active");
// END OF USART1 <-> USART2 bridge
// SOFTWARE UART
let rx_pin = Input::new(p.PD6, Pull::Up);
unsafe { RX_PIN = Some(rx_pin) };
let mut tx_pin = Output::new(p.PB0, Level::High, Speed::VeryHigh);
init_tim6_for_uart(p.TIM6, BAUD, TX_OVERSAMPLE);
init_tim7_for_uart(p.TIM7, BAUD, RX_OVERSAMPLE);
dump_tim6_regs();
let bsrr_ptr = embassy_stm32::pac::GPIOB.bsrr().as_ptr() as *mut u32; // POZOR B REGISTER
spawner.spawn(tx_dma_task(p.GPDMA1_CH0, bsrr_ptr, SW_TX_RING.init([0; TX_RING_BYTES]), &PIPE_SW_TX).unwrap());
// EDN OF SOFTWARE UART
let rx_ring = SW_RX_RING.init([0u8; RX_RING_BYTES]);
let gpio_idr = embassy_stm32::pac::GPIOD.idr().as_ptr() as *mut u8;
spawner.spawn(rx_dma_task(p.GPDMA1_CH1, gpio_idr, rx_ring, &PIPE_SW_RX).unwrap());
info!("SW UART RX DMA started");
let mut buf = [0u8; 64];
loop {
let n = PIPE_SW_RX.read(&mut buf).await;
if n > 0 {
let _ = PIPE_SW_TX.write(&buf[..n]).await;
// info!("SW UART decoded: {:a}", &buf[..n]);
}
yield_now().await;
}
}
#[embassy_executor::task]
pub async fn bridge_usart1_rx_to_usart2_tx(
usart1_rx: &'static Pipe<CriticalSectionRawMutex, 1024>,
usart2_tx: &'static Pipe<CriticalSectionRawMutex, 1024>,
) {
let mut buf = [0u8; 64];
loop {
let n = usart1_rx.read(&mut buf).await;
if n > 0 {
let _ = usart2_tx.write(&buf[..n]).await;
// info!("bridge USART1 - USART2 sent:{} bytes: {}", n, &buf[..n]);
}
yield_now().await;
}
}
#[embassy_executor::task]
pub async fn bridge_usart2_rx_to_usart1_tx(
usart2_rx: &'static Pipe<CriticalSectionRawMutex, 1024>,
usart1_tx: &'static Pipe<CriticalSectionRawMutex, 1024>,
) {
let mut buf = [0u8; 64];
loop {
let n = usart2_rx.read(&mut buf).await;
if n > 0 {
let _ = usart1_tx.write(&buf[..n]).await;
// info!("bridge: USART2 -> USART1 sent {} bytes", n);
}
yield_now().await;
}
}

View File

@@ -0,0 +1,35 @@
// src/config.rs
use crate::software_uart::uart_emulation::{Parity, StopBits, UartConfig};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::pipe::Pipe;
pub const BAUD: u32 = 9_600;
// pub const TX_PIN_BIT: u8 = 2; // PA2
// pub const RX_PIN_BIT: u8 = 3; // PA3
pub const TX_PIN_BIT: u8 = 0; // PB2
pub const RX_PIN_BIT: u8 = 6; // PC3
pub const TX_OVERSAMPLE: u16 = 1;
pub const RX_OVERSAMPLE: u16 = 13;
pub const RX_RING_BYTES: usize = 32768;
pub const TX_RING_BYTES: usize = 4096;
pub const PIPE_HW_TX_SIZE: usize = 1024;
pub const PIPE_HW_RX_SIZE: usize = 1024;
pub const PIPE_SW_TX_SIZE: usize = 1024;
pub const PIPE_SW_RX_SIZE: usize = 4096;
pub const PIPE_INT_TX_SIZE: usize = 1024;
pub const PIPE_INT_RX_SIZE: usize = 1024;
pub static PIPE_HW_TX: Pipe<CriticalSectionRawMutex, PIPE_HW_TX_SIZE> = Pipe::new();
pub static PIPE_HW_RX: Pipe<CriticalSectionRawMutex, PIPE_HW_RX_SIZE> = Pipe::new();
pub static PIPE_SW_TX: Pipe<CriticalSectionRawMutex, PIPE_SW_TX_SIZE> = Pipe::new();
pub static PIPE_SW_RX: Pipe<CriticalSectionRawMutex, PIPE_SW_RX_SIZE> = Pipe::new();
pub static PIPE_INT_TX: Pipe<CriticalSectionRawMutex, PIPE_INT_TX_SIZE> = Pipe::new();
pub static PIPE_INT_RX: Pipe<CriticalSectionRawMutex, PIPE_INT_RX_SIZE> = Pipe::new();
pub const UART_CFG: UartConfig = UartConfig {
data_bits: 8,
parity: Parity::None,
stop_bits: StopBits::One,
};

View File

@@ -0,0 +1,41 @@
// src/hw_uart_internal/driver.rs
use defmt::unwrap;
use embassy_futures::select::{select, Either};
use embassy_stm32::usart::BufferedUart;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::pipe::Pipe;
use embedded_io_async::{Read, Write};
use crate::hw_uart_pc::safety::{RX_PIPE_CAP, TX_PIPE_CAP};
use embassy_futures::yield_now;
#[embassy_executor::task]
pub async fn uart_task(
mut uart: BufferedUart<'static>,
tx_pipe: &'static Pipe<CriticalSectionRawMutex, TX_PIPE_CAP>,
rx_pipe: &'static Pipe<CriticalSectionRawMutex, RX_PIPE_CAP>,
) {
let mut rx_byte = [0u8; 1];
let mut tx_buf = [0u8; 64];
loop {
let rx_fut = uart.read(&mut rx_byte);
let tx_fut = async {
let n = tx_pipe.read(&mut tx_buf).await;
n
};
match select(rx_fut, tx_fut).await {
// Incoming data from UART hardware
Either::First(res) => {
if let Ok(_) = res {
let _ = rx_pipe.write(&rx_byte).await;
}
}
// Outgoing data waiting in TX pipe
Either::Second(n) => {
unwrap!(uart.write(&tx_buf[..n]).await);
}
}
yield_now().await;
}
}

View File

@@ -0,0 +1,4 @@
// src/hw_uart_internal/mod.rs
pub mod driver;
pub mod usart2;

View File

@@ -0,0 +1,11 @@
// src/hw_uart_internal/usart2.rs
use defmt::info;
use embassy_time::Duration;
use crate::hw_uart_pc::safety::preflight_and_suggest_yield_period;
pub fn setup_and_spawn(baudrate: u32) -> Duration {
let yield_period = preflight_and_suggest_yield_period(baudrate);
info!("HW USART2 safe");
yield_period
}

View File

@@ -0,0 +1,41 @@
// src/hw_uart_pc/driver.rs
use defmt::unwrap;
use embassy_futures::select::{select, Either};
use embassy_stm32::usart::BufferedUart;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::pipe::Pipe;
use embedded_io_async::{Read, Write};
use crate::hw_uart_pc::safety::{RX_PIPE_CAP, TX_PIPE_CAP};
use embassy_futures::yield_now;
#[embassy_executor::task]
pub async fn uart_task(
mut uart: BufferedUart<'static>,
tx_pipe: &'static Pipe<CriticalSectionRawMutex, TX_PIPE_CAP>,
rx_pipe: &'static Pipe<CriticalSectionRawMutex, RX_PIPE_CAP>,
) {
let mut rx_byte = [0u8; 1];
let mut tx_buf = [0u8; 64];
loop {
let rx_fut = uart.read(&mut rx_byte);
let tx_fut = async {
let n = tx_pipe.read(&mut tx_buf).await;
n
};
match select(rx_fut, tx_fut).await {
// Incoming data from UART hardware
Either::First(res) => {
if let Ok(_) = res {
let _ = rx_pipe.write(&rx_byte).await;
}
}
// Outgoing data waiting in TX pipe
Either::Second(n) => {
unwrap!(uart.write(&tx_buf[..n]).await);
}
}
yield_now().await;
}
}

View File

@@ -0,0 +1,4 @@
// src/hw_uart_pc/mod.rs
pub mod driver;
pub mod usart1;
pub mod safety;

View File

@@ -0,0 +1,57 @@
// src/safety.rs
use defmt::info;
use embassy_time::Duration;
// ISR RX ring capacity = RX_BUF len
const ISR_RX_BUF_CAP: usize = 256;
// Yield 1/2 the time it takes to fill ISR RX ring.
const YIELD_MARGIN_NUM: u32 = 1;
const YIELD_MARGIN_DEN: u32 = 2;
// Ensure RX_PIPE_CAP can hold this.
const WORST_MAIN_LATENCY_MS: u32 = 20;
pub const TX_PIPE_CAP: usize = 1024;
pub const RX_PIPE_CAP: usize = 1024;
/// Perform safety checks and compute yield timing to avoid buffer overflow.
///
/// # Panics
/// Panics if pipe capacities are too small for the configured baud.
pub fn preflight_and_suggest_yield_period(baud: u32) -> Duration {
// Approx bytes per second for 8N1 (10 bits per byte on the wire)
let bytes_per_sec = (baud / 10).max(1);
// Time until ISR RX ring fills, in microseconds.
let t_fill_us = (ISR_RX_BUF_CAP as u64) * 1_000_000u64 / (bytes_per_sec as u64);
// Choose a yield period as a fraction of t_fill.
let yield_us = (t_fill_us as u64)
.saturating_mul(YIELD_MARGIN_NUM as u64)
/ (YIELD_MARGIN_DEN as u64);
// Verify RX pipe can absorb a worst-case app latency so uart_task
// can always forward without dropping when it runs.
let required_rx_pipe = (bytes_per_sec as u64) * (WORST_MAIN_LATENCY_MS as u64) / 1000;
if (RX_PIPE_CAP as u64) < required_rx_pipe {
core::panic!(
"RX pipe too small: have {}B, need >= {}B for {}ms at {} bps",
RX_PIPE_CAP, required_rx_pipe, WORST_MAIN_LATENCY_MS, baud
);
}
info!(
"Preflight: baud={}, rx_isr={}B, rx_pipe={}B, bytes/s={}, t_fill_us={}, yield_us={}",
baud,
ISR_RX_BUF_CAP,
RX_PIPE_CAP,
bytes_per_sec,
t_fill_us,
yield_us
);
// Never choose zero.
Duration::from_micros(yield_us.max(1) as u64)
}

View File

@@ -0,0 +1,12 @@
// src/uart/usart1.rs
use defmt::info;
use embassy_time::Duration;
use crate::hw_uart_pc::safety::preflight_and_suggest_yield_period;
pub fn setup_and_spawn(baudrate: u32,) -> Duration {
let yield_period: Duration = preflight_and_suggest_yield_period(baudrate);
info!("HW USART1 safe");
yield_period
}

View File

@@ -0,0 +1,5 @@
#![no_std]
pub mod config;
pub mod hw_uart_pc;
pub mod hw_uart_internal;