18 Commits

Author SHA1 Message Date
Priec
8411977751 trying to fix, not success yet 2026-01-19 23:24:41 +01:00
Priec
fd5dd6e888 mermaids 2026-01-19 16:43:58 +01:00
Priec
2774e83d99 ported into a generic library 2026-01-19 15:53:19 +01:00
Priec
9910bf9402 enum to string that is passed to the library, waiting for the enum based generic library 2026-01-19 15:23:39 +01:00
Priec
424c795170 cleanup 2026-01-19 13:56:39 +01:00
Priec
6b26ed9318 working with enums passed as a strings to the library 2026-01-19 13:09:46 +01:00
Priec
054b42547e working now 2026-01-18 23:58:17 +01:00
Priec
b729d3f23d sending messages to the tui chat 2026-01-18 23:16:06 +01:00
Priec
ba2b3b188a big improvement, not theere yet 2026-01-18 22:21:33 +01:00
Priec
70e1559b24 debugged MPU working mqtt is dropping 2026-01-18 21:50:10 +01:00
Priec
94c591c087 nonsense, nothing is fixed 2026-01-18 20:49:34 +01:00
Priec
a910015856 better ui with 3 lines now 2026-01-18 17:09:42 +01:00
Priec
c5fef061f4 pages-tui working 2026-01-18 15:23:04 +01:00
Priec
273bf2f946 dual core setup 2026-01-18 11:20:20 +01:00
Priec
5c12591524 changes to more modern way 2026-01-18 10:13:21 +01:00
Priec
6fe77a1286 my gosh, finally its readable 2026-01-18 00:44:50 +01:00
Priec
1cb6f3a3ee working everything properly well 2026-01-10 16:55:02 +01:00
Priec
fe4e48fbcc big changes 2026-01-10 10:54:50 +01:00
24 changed files with 1757 additions and 259 deletions

View File

@@ -25,6 +25,7 @@
cargo-espflash
espup
mosquitto
mermaid-cli
];
shellHook = ''
@@ -53,6 +54,7 @@ shellHook = ''
rustc --version
which xtensa-esp32-elf-gcc || echo " xtensa-esp32-elf-gcc not found in PATH"
echo "cargo espflash save-image --release --chip esp32 test.bin"
echo ""
echo "MQTT broker test (run manually in two terminals):"
echo " Terminal 1:"

View File

@@ -246,16 +246,6 @@ dependencies = [
"thiserror",
]
[[package]]
name = "defmt-rtt"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b2cac3b8a5644a9e02b75085ebad3b6deafdbdbdec04bb25086523828aa4dfd1"
dependencies = [
"critical-section",
"defmt 1.0.1",
]
[[package]]
name = "delegate"
version = "0.13.4"
@@ -570,6 +560,16 @@ dependencies = [
"embedded-hal 1.0.0",
]
[[package]]
name = "embedded-hal-bus"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "513e0b3a8fb7d3013a8ae17a834283f170deaf7d0eeab0a7c1a36ad4dd356d22"
dependencies = [
"critical-section",
"embedded-hal 1.0.0",
]
[[package]]
name = "embedded-io"
version = "0.6.1"
@@ -821,6 +821,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e7e3ab41e96093d7fd307e93bfc88bd646a8ff23036ebf809e116b18869f719"
dependencies = [
"critical-section",
"defmt 1.0.1",
"document-features",
"esp-metadata-generated",
"log",
@@ -1072,9 +1073,9 @@ dependencies = [
[[package]]
name = "heapless"
version = "0.9.1"
version = "0.9.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b1edcd5a338e64688fbdcb7531a846cfd3476a54784dcb918a0844682bc7ada5"
checksum = "2af2455f757db2b292a9b1768c4b70186d443bcb3b316252d6b540aec1cd89ed"
dependencies = [
"hash32",
"stable_deref_trait",
@@ -1304,6 +1305,13 @@ dependencies = [
"autocfg",
]
[[package]]
name = "pages-tui"
version = "0.1.0"
dependencies = [
"heapless 0.9.2",
]
[[package]]
name = "paste"
version = "1.0.15"
@@ -1430,16 +1438,18 @@ dependencies = [
[[package]]
name = "projekt_final"
version = "0.1.0"
version = "0.2.0"
dependencies = [
"critical-section",
"defmt-rtt",
"defmt 1.0.1",
"dotenvy",
"embassy-executor",
"embassy-futures",
"embassy-net",
"embassy-sync 0.7.2",
"embassy-time 0.5.0",
"embedded-hal 1.0.0",
"embedded-hal-bus",
"embedded-io",
"embedded-io-async",
"esp-alloc",
@@ -1449,9 +1459,10 @@ dependencies = [
"esp-hal-embassy",
"esp-println",
"esp-wifi",
"heapless 0.9.1",
"heapless 0.9.2",
"log",
"mousefood",
"pages-tui",
"ratatui",
"rust-mqtt",
"smoltcp",

View File

@@ -1,14 +1,15 @@
[package]
edition = "2021"
name = "projekt_final"
rust-version = "1.86"
version = "0.1.0"
rust-version = "1.89.0"
version = "0.2.0"
[[bin]]
name = "projekt_final"
path = "./src/bin/main.rs"
[dependencies]
pages-tui = { path = "../../../pages-tui" }
esp-bootloader-esp-idf = { version = "0.2.0", features = ["esp32"] }
esp-hal = { version = "=1.0.0-rc.0", features = [
"esp32",
@@ -34,7 +35,7 @@ esp-backtrace = { version = "0.17.0", features = [
"panic-handler",
"println",
] }
esp-println = { version = "0.15.0", features = ["esp32", "log-04"] }
esp-println = { version = "0.15.0", features = ["esp32", "log-04", "defmt-espflash"] }
# for more networking protocol support see https://crates.io/crates/edge-net
critical-section = "1.2.0"
embassy-executor = { version = "0.7.0", features = [
@@ -67,13 +68,15 @@ smoltcp = { version = "0.12.0", default-features = false, features = [
] }
static_cell = "2.1.1"
rust-mqtt = { version = "0.3.0", default-features = false, features = ["no_std"] }
defmt-rtt = "1.0.0"
embassy-futures = "0.1.2"
embassy-sync = "0.7.2"
heapless = "0.9.1"
mousefood = { git = "https://github.com/j-g00da/mousefood", branch = "main", default-features = false }
ssd1306 = "0.10.0"
ratatui = { version = "0.30.0", default-features = false, features = ["macros", "all-widgets", "portable-atomic"] }
embedded-hal-bus = "0.3.0"
embedded-hal = "1.0.0"
defmt = "1.0.1"
[build-dependencies]
dotenvy = "0.15.7"

View File

@@ -0,0 +1,37 @@
graph TD
START[MPU reads @50ms = 20 Hz] --> A{IMU_CHANNEL<br/>try_send}
A -->|Full| DROP1[❌ DROP: Channel full<br/>16 slots @ 50ms = 800ms buffer]
A -->|OK| B[Main Loop receive]
B --> C[Drain loop:<br/>Get freshest reading]
C --> D{Time check:<br/>≥3s since last?}
D -->|No| E[Skip MQTT]
D -->|Yes| F{mqtt_set_imu<br/>try_lock IMU_LATEST}
F -->|Locked| DROP2[❌ SKIP: Mutex busy]
F -->|OK| G[Store payload]
E --> H[show_imu]
G --> H
H --> I{DISPLAY_CHANNEL<br/>try_send}
I -->|Full| DROP3[❌ DROP: Display slow<br/>8 slots @ 100ms = 800ms buffer]
I -->|OK| J[Display renders]
G --> K[MQTT Task loop]
K --> L{IMU_LATEST<br/>try_lock}
L -->|Empty/Locked| M[Skip this iteration]
L -->|Has data| N[Send to broker<br/>QoS0 no retain]
N --> O{TCP send result}
O -->|Fail| RECONNECT[❌ Session dies<br/>Reconnect in 5s]
O -->|OK| P[✅ Data sent]
style DROP1 fill:#ffcccc
style DROP2 fill:#ffcccc
style DROP3 fill:#ffcccc
style RECONNECT fill:#ffcccc
style P fill:#ccffcc

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -0,0 +1,54 @@
sequenceDiagram
participant HW as MPU6050 Hardware
participant MPU as MPU Task<br/>(Core 0)
participant CH as IMU_CHANNEL<br/>[16 slots]
participant MAIN as Main Loop<br/>(Core 0)
participant LATEST as IMU_LATEST<br/>(Mutex)
participant MQTT as MQTT Task<br/>(Core 1)
participant DISP as Display API
Note over MPU: Every 50ms
MPU->>HW: Read sensor (I2C)
HW-->>MPU: Raw data
MPU->>MPU: Convert to ImuReading
MPU->>CH: try_send(reading)
alt Channel full
CH--xMPU: Drop (log warning)
else Channel has space
CH-->>MPU: OK
end
Note over MAIN: Continuous loop
MAIN->>CH: receive() [blocking]
CH-->>MAIN: reading
Note over MAIN: Drain queue
loop While available
MAIN->>CH: try_receive()
CH-->>MAIN: newer reading
end
MAIN->>DISP: show_imu(reading)<br/>[try_send]
Note over MAIN: Every 3 seconds
alt Time >= 3s since last
MAIN->>MAIN: Format JSON payload
MAIN->>LATEST: mqtt_set_imu()<br/>[try_lock]
alt Mutex available
LATEST-->>MAIN: Stored
else Mutex locked
LATEST--xMAIN: Skip
end
end
Note over MQTT: Continuous loop
MQTT->>LATEST: try_lock()
alt Data available
LATEST-->>MQTT: payload
MQTT->>MQTT: send_message("esp32/imu")
else No data
LATEST--xMQTT: None
end

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 37 KiB

View File

@@ -0,0 +1,42 @@
graph TB
subgraph "Core 0 - Application"
MPU[MPU Task<br/>50ms sampling]
DISPLAY[Display Task<br/>100ms refresh]
MAIN[Main Loop]
BUTTONS[Button Task]
end
subgraph "Core 1 - Network"
WIFI[WiFi Connection Task]
NETWORK[Network Stack Runner]
MQTT[MQTT Task]
end
subgraph "Shared Channels"
IMU_CH[(IMU_CHANNEL<br/>size: 16)]
DISP_CH[(DISPLAY_CHANNEL<br/>size: 8)]
CMD_CH[(CMD_CHAN<br/>size: 8)]
EVT_CH[(EVT_CHAN<br/>size: 8)]
IMU_LATEST[(IMU_LATEST<br/>Mutex)]
end
subgraph "Hardware"
MPU_HW[MPU6050<br/>I2C 0x68]
OLED[SSD1306<br/>I2C]
BROKER[MQTT Broker]
end
MPU_HW -->|I2C Read| MPU
MPU -->|send| IMU_CH
IMU_CH -->|receive| MAIN
MAIN -->|try_send| DISP_CH
MAIN -->|mqtt_set_imu| IMU_LATEST
DISP_CH -->|receive| DISPLAY
DISPLAY -->|I2C Write| OLED
IMU_LATEST -->|try_lock| MQTT
MQTT <-->|TCP/IP| BROKER
BUTTONS -->|push_key| DISP_CH
style IMU_CH fill:#ff9999
style DISP_CH fill:#99ccff
style IMU_LATEST fill:#ffcc99

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 24 KiB

181
mqtt_display/old_main.rs Normal file
View File

@@ -0,0 +1,181 @@
// src/bin/main.rs
#![no_std]
#![no_main]
#![deny(
clippy::mem_forget,
reason = "mem::forget is generally not safe to do with esp_hal types"
)]
use embassy_executor::Spawner;
use embassy_futures::select::{select, Either};
use embassy_net::{Runner, StackResources};
use embassy_time::{Duration, Timer};
use esp_alloc as _;
use esp_backtrace as _;
use esp_hal::{clock::CpuClock, rng::Rng, timer::timg::TimerGroup};
use esp_wifi::{
init,
wifi::{ClientConfiguration, Configuration, WifiController, WifiDevice, WifiEvent, WifiState},
EspWifiController,
};
use log::info;
use rust_mqtt::packet::v5::publish_packet::QualityOfService;
use projekt_final::mqtt::client::{
mqtt_events, mqtt_publish, mqtt_subscribe, mqtt_task, IncomingMsg,
};
use defmt_rtt as _;
extern crate alloc;
esp_bootloader_esp_idf::esp_app_desc!();
macro_rules! mk_static {
($t:ty,$val:expr) => {{
static STATIC_CELL: static_cell::StaticCell<$t> = static_cell::StaticCell::new();
#[deny(unused_attributes)]
let x = STATIC_CELL.uninit().write(($val));
x
}};
}
const SSID: &str = env!("SSID");
const PASSWORD: &str = env!("PASSWORD");
#[esp_hal_embassy::main]
async fn main(spawner: Spawner) -> ! {
esp_println::logger::init_logger_from_env();
let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
let peripherals = esp_hal::init(config);
esp_alloc::heap_allocator!(size: 72 * 1024);
let timg0 = TimerGroup::new(peripherals.TIMG0);
let mut rng = Rng::new(peripherals.RNG);
let esp_wifi_ctrl = &*mk_static!(
EspWifiController<'static>,
init(timg0.timer0, rng.clone()).unwrap()
);
let (controller, interfaces) =
esp_wifi::wifi::new(&esp_wifi_ctrl, peripherals.WIFI).unwrap();
let wifi_interface = interfaces.sta;
let timg1 = TimerGroup::new(peripherals.TIMG1);
esp_hal_embassy::init(timg1.timer0);
let config = embassy_net::Config::dhcpv4(Default::default());
let seed = (rng.random() as u64) << 32 | rng.random() as u64;
// Init network stack
let (stack, runner) = embassy_net::new(
wifi_interface,
config,
mk_static!(StackResources<3>, StackResources::<3>::new()),
seed,
);
spawner.spawn(connection(controller)).ok();
spawner.spawn(net_task(runner)).ok();
// Wait for link up
loop {
if stack.is_link_up() {
break;
}
Timer::after(Duration::from_millis(500)).await;
}
info!("Waiting to get IP address...");
loop {
if let Some(config) = stack.config_v4() {
info!("Got IP: {}", config.address);
break;
}
Timer::after(Duration::from_millis(500)).await;
}
spawner.spawn(mqtt_task(stack)).expect("failed to spawn MQTT task");
info!("MQTT task started");
mqtt_publish("esp32/topic", b"hello from ESP32 (init)", QualityOfService::QoS1, false).await;
info!("Sent initial MQTT message");
mqtt_subscribe("esp32/topic").await;
// Get a receiver for incoming MQTT messages
let mqtt_rx = mqtt_events();
loop {
// Drive both: either process an MQTT message or publish periodically
match select(mqtt_rx.receive(), Timer::after(Duration::from_secs(5))).await
{
// Received inbound MQTT message (from broker)
Either::First(msg) => {
handle_incoming(msg);
}
// Time-based example publish
Either::Second(_) => {
// mqtt_publish(
// "esp32/topic",
// b"hello from main",
// QualityOfService::QoS1,
// false,
// )
// .await;
}
}
}
}
fn handle_incoming(msg: IncomingMsg) {
if let Ok(txt) = core::str::from_utf8(&msg.payload) {
info!("MAIN RX [{}]: {}", msg.topic.as_str(), txt);
info!("Received MQTT message -> topic: '{}', payload: '{}'", msg.topic.as_str(), txt);
} else {
info!("MAIN RX [{}]: {:?}", msg.topic.as_str(), msg.payload);
}
}
#[embassy_executor::task]
async fn connection(mut controller: WifiController<'static>) {
info!("start connection task");
info!("Device capabilities: {:?}", controller.capabilities());
loop {
match esp_wifi::wifi::wifi_state() {
WifiState::StaConnected => {
controller.wait_for_event(WifiEvent::StaDisconnected).await;
Timer::after(Duration::from_millis(5000)).await
}
_ => {}
}
if !matches!(controller.is_started(), Ok(true)) {
let client_config = Configuration::Client(ClientConfiguration {
ssid: SSID.into(),
password: PASSWORD.into(),
..Default::default()
});
controller.set_configuration(&client_config).unwrap();
info!("Starting wifi");
controller.start_async().await.unwrap();
info!("Wifi started!");
}
info!("About to connect...");
match controller.connect_async().await {
Ok(_) => info!("Wifi connected!"),
Err(e) => {
info!("Failed to connect to wifi: {e:?}");
Timer::after(Duration::from_millis(5000)).await
}
}
}
}
#[embassy_executor::task]
async fn net_task(mut runner: Runner<'static, WifiDevice<'static>>) {
runner.run().await
}

View File

@@ -6,31 +6,56 @@
clippy::mem_forget,
reason = "mem::forget is generally not safe to do with esp_hal types"
)]
// TODO WARNING core 1 should be logic, core 0 wifi, its flipped now
use embassy_executor::Spawner;
use embassy_futures::select::{select, Either};
use embassy_futures::select::{select, Either, select3, Either3};
use embassy_net::{Runner, StackResources};
use embassy_time::{Duration, Timer};
use embassy_sync::signal::Signal;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_time::{Duration, Timer, Instant};
use projekt_final::bus::I2cInner;
use projekt_final::mqtt::client;
use esp_alloc as _;
use esp_backtrace as _;
use esp_hal::{clock::CpuClock, rng::Rng, timer::timg::TimerGroup};
use esp_hal::{
gpio::InputConfig,
clock::CpuClock,
gpio::{Input, Pull},
i2c::master::{Config as I2cConfig, I2c},
rng::Rng,
system::{CpuControl, Stack},
timer::timg::TimerGroup,
};
use esp_wifi::{
init,
wifi::{ClientConfiguration, Configuration, WifiController, WifiDevice, WifiEvent, WifiState},
EspWifiController,
};
use pages_tui::input::Key;
use log::info;
use rust_mqtt::packet::v5::publish_packet::QualityOfService;
use projekt_final::mqtt::client::{
mqtt_events, mqtt_publish, mqtt_subscribe, mqtt_task, IncomingMsg,
use static_cell::StaticCell;
use core::cell::RefCell;
use heapless::String;
use core::fmt::Write;
use projekt_final::{
bus,
display,
mpu,
mqtt::client::{mqtt_events, mqtt_try_publish, mqtt_publish, mqtt_subscribe, mqtt_task, IncomingMsg},
};
use projekt_final::i2c::com::i2c_check;
use projekt_final::i2c::com::display_task;
use defmt_rtt as _;
extern crate alloc;
use alloc::format;
esp_bootloader_esp_idf::esp_app_desc!();
static I2C_BUS: StaticCell<RefCell<I2cInner>> = StaticCell::new();
static APP_CORE_STACK: StaticCell<Stack<8192>> = StaticCell::new();
static EXECUTOR_CORE1: StaticCell<esp_hal_embassy::Executor> = StaticCell::new();
static NETWORK_READY: Signal<CriticalSectionRawMutex, ()> = Signal::new();
macro_rules! mk_static {
($t:ty,$val:expr) => {{
@@ -43,55 +68,153 @@ macro_rules! mk_static {
const SSID: &str = env!("SSID");
const PASSWORD: &str = env!("PASSWORD");
const MQTT_PUBLISH_DIVIDER: u32 = 10;
esp_bootloader_esp_idf::esp_app_desc!();
#[esp_hal_embassy::main]
async fn main(spawner: Spawner) -> ! {
esp_println::logger::init_logger_from_env();
info!("===============================");
info!(" ESP32 IoT Firmware Starting");
info!("===============================");
let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
let peripherals = esp_hal::init(config);
esp_alloc::heap_allocator!(size: 72 * 1024);
info!("Initializing I2C bus...");
let i2c = I2c::new(peripherals.I2C0, I2cConfig::default())
.expect("Failed to create I2C instance")
.with_sda(peripherals.GPIO21)
.with_scl(peripherals.GPIO22)
.into_async();
let i2c_bus = I2C_BUS.init(RefCell::new(i2c));
let display_i2c = bus::new_device(i2c_bus);
let mpu_i2c = bus::new_device(i2c_bus);
info!("Initializing WiFi...");
let timg0 = TimerGroup::new(peripherals.TIMG0);
let mut rng = Rng::new(peripherals.RNG);
let esp_wifi_ctrl = &*mk_static!(
let esp_wifi_ctrl = mk_static!(
EspWifiController<'static>,
init(timg0.timer0, rng.clone()).unwrap()
esp_wifi::init(timg0.timer0, rng.clone()).unwrap()
);
let (controller, interfaces) =
esp_wifi::wifi::new(&esp_wifi_ctrl, peripherals.WIFI).unwrap();
esp_wifi::wifi::new(esp_wifi_ctrl, peripherals.WIFI).unwrap();
let wifi_interface = interfaces.sta;
let timg1 = TimerGroup::new(peripherals.TIMG1);
esp_hal_embassy::init(timg1.timer0);
let config = embassy_net::Config::dhcpv4(Default::default());
esp_hal_embassy::init([timg1.timer0, timg1.timer1]);
let seed = (rng.random() as u64) << 32 | rng.random() as u64;
// Init network stack
// Start core 1 for WiFi and MQTT (network stack created there)
let mut cpu_control = CpuControl::new(peripherals.CPU_CTRL);
let _guard = cpu_control.start_app_core(
APP_CORE_STACK.init(Stack::new()),
move || {
let executor = EXECUTOR_CORE1.init(esp_hal_embassy::Executor::new());
executor.run(|spawner| {
spawner.spawn(core1_network_task(spawner, controller, wifi_interface, seed)).ok();
});
}
).unwrap();
// Wait for network to be ready (signaled from core 1)
NETWORK_READY.wait().await;
info!("Network ready, starting core 0 tasks");
let config = InputConfig::default().with_pull(Pull::Down);
let button_select = Input::new(peripherals.GPIO32, config);
let button_next = Input::new(peripherals.GPIO35, config);
spawner.spawn(button_detection_task(button_select, button_next)).unwrap();
// Core 0: display and MPU tasks
spawner.spawn(display::task::display_task(display_i2c)).expect("spawn display_task");
spawner.spawn(mpu::task::mpu_task(mpu_i2c)).expect("spawn mpu_task");
display::api::set_status("Booting...").await;
mqtt_subscribe("esp32/read").await;
mqtt_publish("esp32/imu", b"online", QualityOfService::QoS1, false).await;
display::api::set_status("Running").await;
display::api::set_mqtt_status(true, 0).await;
let mqtt_rx = mqtt_events();
let imu_rx = mpu::api::events();
let mut imu_reading_count: u32 = 0;
let mut mqtt_msg_count: u32 = 0;
let mut mqtt_publish_drops: u32 = 0;
let mut last_mqtt_publish = Instant::now();
let mqtt_publish_interval = Duration::from_secs(3);
loop {
match select3(
mqtt_rx.receive(),
imu_rx.receive(),
Timer::after(Duration::from_secs(5)),
).await {
Either3::First(msg) => {
mqtt_msg_count += 1;
handle_mqtt_message(msg).await;
display::api::set_mqtt_status(true, mqtt_msg_count).await;
}
Either3::Second(mut reading) => {
// Drain zabezpečuje, že 'reading' je najčerstvejšia možná hodnota
let mut drained = 0;
while let Ok(next) = imu_rx.try_receive() {
reading = next;
drained += 1;
}
imu_reading_count += 1;
display::api::show_imu(reading);
// 3. Nahraďte pôvodnú podmienku týmto časovým zámkom
if last_mqtt_publish.elapsed() >= mqtt_publish_interval {
let payload = client::encode_imu_json(&reading);
client::mqtt_set_imu_payload(payload);
last_mqtt_publish = Instant::now();
}
}
Either3::Third(_) => {
crate::mpu::api::IMU_CHANNEL.clear();
info!("IMU heartbeat: force-cleared queue, {} readings total, {} mqtt drops",
imu_reading_count, mqtt_publish_drops);
}
}
}
}
// Runs on core 1 - creates and owns the network stack
#[embassy_executor::task]
async fn core1_network_task(
spawner: Spawner,
controller: WifiController<'static>,
wifi_interface: WifiDevice<'static>,
seed: u64,
) {
spawner.spawn(connection_task(controller)).ok();
let net_config = embassy_net::Config::dhcpv4(Default::default());
let (stack, runner) = embassy_net::new(
wifi_interface,
config,
net_config,
mk_static!(StackResources<3>, StackResources::<3>::new()),
seed,
);
spawner.spawn(connection(controller)).ok();
spawner.spawn(net_task(runner)).ok();
// Wait for link up
// Wait for network
loop {
if stack.is_link_up() {
break;
}
if stack.is_link_up() { break; }
Timer::after(Duration::from_millis(500)).await;
}
info!("Waiting to get IP address...");
loop {
if let Some(config) = stack.config_v4() {
info!("Got IP: {}", config.address);
@@ -100,62 +223,28 @@ async fn main(spawner: Spawner) -> ! {
Timer::after(Duration::from_millis(500)).await;
}
spawner.spawn(mqtt_task(stack)).expect("failed to spawn MQTT task");
info!("MQTT task started");
// Signal core 0 that network is ready
NETWORK_READY.signal(());
spawner.spawn(display_task()).expect("failed to spawn Display task");
info!("I2C scan task started");
mqtt_publish("esp32/topic", b"hello from ESP32 (init)", QualityOfService::QoS1, false).await;
info!("Sent initial MQTT message");
mqtt_subscribe("esp32/topic").await;
// Get a receiver for incoming MQTT messages
let mqtt_rx = mqtt_events();
loop {
// Drive both: either process an MQTT message or publish periodically
match select(mqtt_rx.receive(), Timer::after(Duration::from_secs(5))).await
{
// Received inbound MQTT message (from broker)
Either::First(msg) => {
handle_incoming(msg);
}
// Time-based example publish
Either::Second(_) => {
// mqtt_publish(
// "esp32/topic",
// b"hello from main",
// QualityOfService::QoS1,
// false,
// )
// .await;
}
}
}
spawner.spawn(mqtt_task(stack)).ok();
}
fn handle_incoming(msg: IncomingMsg) {
async fn handle_mqtt_message(msg: IncomingMsg) {
if let Ok(txt) = core::str::from_utf8(&msg.payload) {
info!("MAIN RX [{}]: {}", msg.topic.as_str(), txt);
info!("Received MQTT message -> topic: '{}', payload: '{}'", msg.topic.as_str(), txt);
} else {
info!("MAIN RX [{}]: {:?}", msg.topic.as_str(), msg.payload);
match txt {
"clear" => { display::api::clear().await; }
"status" => { mqtt_publish("esp32/status", b"running", QualityOfService::QoS1, false).await; }
_ => { display::api::add_chat_message(txt).await; }
}
}
}
#[embassy_executor::task]
async fn connection(mut controller: WifiController<'static>) {
info!("start connection task");
info!("Device capabilities: {:?}", controller.capabilities());
async fn connection_task(mut controller: WifiController<'static>) {
loop {
match esp_wifi::wifi::wifi_state() {
WifiState::StaConnected => {
if esp_wifi::wifi::wifi_state() == WifiState::StaConnected {
controller.wait_for_event(WifiEvent::StaDisconnected).await;
Timer::after(Duration::from_millis(5000)).await
}
_ => {}
Timer::after(Duration::from_millis(5000)).await;
}
if !matches!(controller.is_started(), Ok(true)) {
let client_config = Configuration::Client(ClientConfiguration {
@@ -164,16 +253,13 @@ async fn connection(mut controller: WifiController<'static>) {
..Default::default()
});
controller.set_configuration(&client_config).unwrap();
info!("Starting wifi");
info!("Wi-Fi starting...");
controller.start_async().await.unwrap();
info!("Wifi started!");
}
info!("About to connect...");
match controller.connect_async().await {
Ok(_) => info!("Wifi connected!"),
Err(e) => {
info!("Failed to connect to wifi: {e:?}");
info!("Failed to connect to wifi: {e:#?}");
Timer::after(Duration::from_millis(5000)).await
}
}
@@ -184,3 +270,24 @@ async fn connection(mut controller: WifiController<'static>) {
async fn net_task(mut runner: Runner<'static, WifiDevice<'static>>) {
runner.run().await
}
#[embassy_executor::task]
async fn button_detection_task(mut select_btn: Input<'static>, mut next_btn: Input<'static>) {
loop {
match select(
select_btn.wait_for_rising_edge(),
next_btn.wait_for_rising_edge(),
).await {
Either::First(_) => {
info!("Detection: GPIO 32 (Select) triggered!");
display::api::push_key(Key::enter()).await;
}
Either::Second(_) => {
info!("Detection: GPIO 35 (Next) triggered!");
display::api::push_key(Key::tab()).await
}
}
// Debounce: prevent mechanical bouncing from double-triggering
embassy_time::Timer::after(embassy_time::Duration::from_millis(200)).await;
}
}

View File

@@ -0,0 +1,22 @@
// src/bus/mod.rs
//! Shared access to the hardware I2C peripheral on a
//! single core.
use core::cell::RefCell;
use embedded_hal_bus::i2c::RefCellDevice;
use esp_hal::i2c::master::I2c;
use esp_hal::Async;
/// I2C peripheral type
pub type I2cInner = I2c<'static, Async>;
/// RefCell to share the bus on a single core.
pub type SharedI2c = RefCell<I2cInner>;
/// Shared I2C device.
pub type I2cDevice = RefCellDevice<'static, I2cInner>;
/// New I2C device handle from the shared bus.
pub fn new_device(bus: &'static SharedI2c) -> I2cDevice {
RefCellDevice::new(bus)
}

View File

@@ -0,0 +1,31 @@
// src/contracts.rs
//! Cross-feature message contracts.
//!
//! Features depend on these types, not on each other.
use heapless::String;
use pages_tui::input::Key;
/// IMU sensor reading from MPU6050
#[derive(Clone, Copy, Default, Debug)]
pub struct ImuReading {
pub accel_g: [f32; 3],
pub gyro_dps: [f32; 3],
pub temp_c: f32,
/// Timestamp in milliseconds since boot
pub timestamp_ms: u64,
}
/// Commands that can be sent to the display actor
#[derive(Clone, Debug)]
pub enum DisplayCommand {
SetImu(ImuReading),
SetStatus(String<32>),
ShowError(String<64>),
SetMqttStatus { connected: bool, msg_count: u32 },
/// Clear the display to default state
Clear,
PushKey(Key),
AddChatMessage(String<24>),
}

View File

@@ -0,0 +1,66 @@
// src/display/api.rs
//! display API
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::{Channel, Receiver, TrySendError};
use heapless::String;
use crate::contracts::{DisplayCommand, ImuReading};
use pages_tui::input::Key;
const QUEUE_SIZE: usize = 8;
pub(crate) static DISPLAY_CHANNEL: Channel<CriticalSectionRawMutex, DisplayCommand, QUEUE_SIZE> =
Channel::new();
pub async fn send(cmd: DisplayCommand) {
DISPLAY_CHANNEL.send(cmd).await;
}
pub fn try_send(cmd: DisplayCommand) -> Result<(), DisplayCommand> {
DISPLAY_CHANNEL.try_send(cmd).map_err(|e| match e {
TrySendError::Full(command) => command,
})
}
pub(crate) fn receiver() -> Receiver<'static, CriticalSectionRawMutex, DisplayCommand, QUEUE_SIZE> {
DISPLAY_CHANNEL.receiver()
}
/// Show IMU data - NON-BLOCKING to prevent backpressure deadlock
pub fn show_imu(reading: ImuReading) {
// try_send instead of send().await
// If display is slow, we drop the reading rather than blocking the main loop
let _ = try_send(DisplayCommand::SetImu(reading));
}
pub async fn set_status(text: &str) {
let mut s = String::<32>::new();
let _ = s.push_str(&text[..text.len().min(32)]);
send(DisplayCommand::SetStatus(s)).await;
}
pub async fn show_error(text: &str) {
let mut s = String::<64>::new();
let _ = s.push_str(&text[..text.len().min(64)]);
send(DisplayCommand::ShowError(s)).await;
}
pub async fn set_mqtt_status(connected: bool, msg_count: u32) {
send(DisplayCommand::SetMqttStatus { connected, msg_count }).await;
}
pub async fn clear() {
send(DisplayCommand::Clear).await;
}
pub async fn push_key(key: Key) {
send(DisplayCommand::PushKey(key)).await;
}
/// Add a chat message (for Chat page)
pub async fn add_chat_message(msg: &str) {
let mut s = String::<24>::new();
let _ = s.push_str(&msg[..msg.len().min(24)]);
send(DisplayCommand::AddChatMessage(s)).await;
}

View File

@@ -0,0 +1,6 @@
// src/display/mod.rs
//! SSD1306 OLED display
pub mod api;
pub mod task;
pub mod tui;

View File

@@ -0,0 +1,101 @@
// src/display/task.rs
use embassy_time::{Duration, Timer};
use log::{error, info};
use alloc::boxed::Box;
use mousefood::{EmbeddedBackend, EmbeddedBackendConfig};
use ratatui::Terminal;
use ssd1306::{mode::BufferedGraphicsMode, prelude::*, I2CDisplayInterface, Ssd1306};
use crate::bus::I2cDevice;
use crate::display::api::receiver;
use crate::display::tui::{render_frame, DisplayState, Screen, ScreenEvent};
use crate::contracts::DisplayCommand;
use pages_tui::prelude::*;
const REFRESH_INTERVAL_MS: u64 = 100;
#[embassy_executor::task]
pub async fn display_task(i2c: I2cDevice) {
info!("Display task starting...");
let interface = I2CDisplayInterface::new(i2c);
let mut display = Ssd1306::new(interface, DisplaySize128x32, DisplayRotation::Rotate0)
.into_buffered_graphics_mode();
if let Err(e) = display.init() {
error!("Display init failed: {:?}", e);
loop { Timer::after(Duration::from_secs(60)).await; }
}
let config = EmbeddedBackendConfig {
flush_callback: Box::new(|d: &mut Ssd1306<_, _, BufferedGraphicsMode<DisplaySize128x32>>| {
let _ = d.flush();
}),
..Default::default()
};
let backend = EmbeddedBackend::new(&mut display, config);
let mut terminal = Terminal::new(backend).expect("terminal init failed");
let mut state = DisplayState::default();
let mut orchestrator = Orchestrator::<Screen>::new();
let rx = receiver();
// Register pages
// Enum-based registration
orchestrator.register(Screen::Menu);
orchestrator.register(Screen::Imu);
orchestrator.register(Screen::Chat);
orchestrator.bind(Key::tab(), ComponentAction::Next);
orchestrator.bind(Key::enter(), ComponentAction::Select);
let _ = orchestrator.navigate_to(Screen::Menu);
info!("Display ready");
loop {
while let Ok(cmd) = rx.try_receive() {
match cmd {
DisplayCommand::PushKey(key) => {
if key == Key::tab() {
orchestrator.focus_manager_mut().next();
} else if key == Key::enter() {
if let Ok(events) = orchestrator.process_frame(key) {
for event in events {
match event {
ScreenEvent::GoToImu => {
let _ = orchestrator.navigate_to(Screen::Imu);
}
ScreenEvent::GoToChat => {
let _ = orchestrator.navigate_to(Screen::Chat);
}
ScreenEvent::NavigatePrev => {
if let Some(cur) = orchestrator.current() {
let prev = cur.prev();
let _ = orchestrator.navigate_to(prev);
}
}
ScreenEvent::NavigateNext => {
if let Some(cur) = orchestrator.current() {
let next = cur.next();
let _ = orchestrator.navigate_to(next);
}
}
}
}
}
}
}
_ => state.apply_command(cmd),
}
}
if let Some(screen) = orchestrator.current() {
render_frame(&mut terminal, screen, orchestrator.focus_manager().current(), &state);
}
Timer::after(Duration::from_millis(REFRESH_INTERVAL_MS)).await;
}
}

View File

@@ -0,0 +1,277 @@
// src/display/tui.rs
use crate::contracts::{DisplayCommand, ImuReading};
use alloc::format;
use heapless::String;
use pages_tui::prelude::*;
use ratatui::{
layout::Rect,
style::Stylize,
widgets::Paragraph,
Terminal,
};
use log::info;
/// Focus targets - different per screen
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PageFocus {
MenuImu,
MenuChat,
NavPrev,
NavNext,
}
impl FocusId for PageFocus {}
const MENU_TARGETS: &[PageFocus] = &[PageFocus::MenuImu, PageFocus::MenuChat];
const NAV_TARGETS: &[PageFocus] = &[PageFocus::NavPrev, PageFocus::NavNext];
/// Display state
pub struct DisplayState {
pub(crate) status: String<32>,
pub(crate) last_imu: Option<ImuReading>,
pub(crate) last_error: Option<String<64>>,
pub(crate) mqtt_connected: bool,
pub(crate) mqtt_msg_count: u32,
pub(crate) chat_msg1: String<24>,
pub(crate) chat_msg2: String<24>,
}
impl Default for DisplayState {
fn default() -> Self {
Self {
status: String::new(),
last_imu: None,
last_error: None,
mqtt_connected: false,
mqtt_msg_count: 0,
chat_msg1: String::new(),
chat_msg2: String::new(),
}
}
}
impl DisplayState {
pub fn apply_command(&mut self, cmd: DisplayCommand) {
match cmd {
DisplayCommand::SetImu(reading) => {
self.last_imu = Some(reading);
self.last_error = None;
}
DisplayCommand::SetStatus(s) => self.status = s,
DisplayCommand::ShowError(e) => self.last_error = Some(e),
DisplayCommand::SetMqttStatus { connected, msg_count } => {
self.mqtt_connected = connected;
self.mqtt_msg_count = msg_count;
}
DisplayCommand::Clear => {
self.last_imu = None;
self.last_error = None;
self.status = String::new();
}
DisplayCommand::PushKey(_) => {}
DisplayCommand::AddChatMessage(msg) => {
self.add_chat_message(msg.as_str());
}
}
}
pub fn add_chat_message(&mut self, msg: &str) {
self.chat_msg2 = self.chat_msg1.clone();
self.chat_msg1.clear();
let _ = self.chat_msg1.push_str(&msg[..msg.len().min(24)]);
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Screen {
Menu,
Imu,
Chat,
}
#[derive(Clone, Debug)]
pub enum ScreenEvent {
GoToImu,
GoToChat,
NavigatePrev,
NavigateNext,
}
impl Component for Screen {
type Action = ComponentAction;
type Event = ScreenEvent;
type Focus = PageFocus;
fn handle(
&mut self,
focus: &Self::Focus,
action: Self::Action,
) -> Result<Option<Self::Event>, ComponentError> {
if let ComponentAction::Select = action {
info!("Select {:?} focus:{:?}", self, focus);
return Ok(Some(match focus {
PageFocus::MenuImu => ScreenEvent::GoToImu,
PageFocus::MenuChat => ScreenEvent::GoToChat,
PageFocus::NavPrev => ScreenEvent::NavigatePrev,
PageFocus::NavNext => ScreenEvent::NavigateNext,
}));
}
Ok(None)
}
fn targets(&self) -> &[Self::Focus] {
match self {
Screen::Menu => MENU_TARGETS,
Screen::Imu | Screen::Chat => NAV_TARGETS,
}
}
fn on_enter(&mut self) -> Result<(), ComponentError> {
info!("Enter: {:?}", self);
Ok(())
}
fn on_exit(&mut self) -> Result<(), ComponentError> {
Ok(())
}
}
// PAGE ORDER
const PAGE_ORDER: &[Screen] = &[Screen::Menu, Screen::Imu, Screen::Chat];
impl Screen {
pub fn next(&self) -> Screen {
let idx = PAGE_ORDER.iter().position(|p| p == self).unwrap_or(0);
PAGE_ORDER[(idx + 1) % PAGE_ORDER.len()].clone()
}
pub fn prev(&self) -> Screen {
let idx = PAGE_ORDER.iter().position(|p| p == self).unwrap_or(0);
if idx == 0 {
PAGE_ORDER[PAGE_ORDER.len() - 1].clone()
} else {
PAGE_ORDER[idx - 1].clone()
}
}
pub fn to_str(&self) -> &'static str {
match self {
Screen::Menu => "menu",
Screen::Imu => "imu",
Screen::Chat => "chat",
}
}
}
// RENDERING
/// Get row rect (0-3) for 128x32 display
#[inline]
fn row(area: Rect, n: u16) -> Rect {
Rect::new(area.x, area.y + n, area.width, 1)
}
pub fn render_frame<B: ratatui::backend::Backend>(
terminal: &mut Terminal<B>,
current_screen: &Screen,
focused: Option<&PageFocus>,
state: &DisplayState,
) {
let _ = terminal.draw(|f| {
let area = f.area();
if let Some(ref err) = state.last_error {
f.render_widget(Paragraph::new(format!("ERR:{}", err.as_str())).white().bold(), area);
return;
}
match current_screen {
Screen::Menu => render_menu(f, area, focused, state),
Screen::Imu => render_imu(f, area, focused, state),
Screen::Chat => render_chat(f, area, focused, state),
}
});
}
fn render_menu(f: &mut ratatui::Frame, area: Rect, focused: Option<&PageFocus>, state: &DisplayState) {
// Row 0 Title
let conn = if state.mqtt_connected { "*" } else { "x" };
f.render_widget(
Paragraph::new(format!("-- ESP32 Hub {} --", conn)).white().bold(),
row(area, 0),
);
// Row 1 Sensors
let imu_sel = focused == Some(&PageFocus::MenuImu);
f.render_widget(
Paragraph::new(if imu_sel { " > Sensors" } else { " Sensors" })
.style(if imu_sel { ratatui::style::Style::default().white().bold() } else { ratatui::style::Style::default().white() }),
row(area, 1),
);
// Row 2 Messages
let chat_sel = focused == Some(&PageFocus::MenuChat);
f.render_widget(
Paragraph::new(if chat_sel { " > Messages" } else { " Messages" })
.style(if chat_sel { ratatui::style::Style::default().white().bold() } else { ratatui::style::Style::default().white() }),
row(area, 2),
);
}
fn render_imu(f: &mut ratatui::Frame, area: Rect, focused: Option<&PageFocus>, state: &DisplayState) {
if let Some(ref imu) = state.last_imu {
// Row 0 Gyro
f.render_widget(
Paragraph::new(format!("G:{:+5.0}{:+5.0}{:+5.0}", imu.gyro_dps[0], imu.gyro_dps[1], imu.gyro_dps[2])).cyan(),
row(area, 0),
);
// Row 1 Accel
f.render_widget(
Paragraph::new(format!("A:{:+.1} {:+.1} {:+.1}", imu.accel_g[0], imu.accel_g[1], imu.accel_g[2])).green(),
row(area, 1),
);
// Row 2 Temp
f.render_widget(
Paragraph::new(format!("T: {:.1}C", imu.temp_c)).yellow(),
row(area, 2),
);
} else {
f.render_widget(Paragraph::new("Waiting for MPU...").white(), row(area, 1));
}
// Row 3 Nav bar
// render_nav_bar(f, row(area, 3), focused);
}
fn render_chat(f: &mut ratatui::Frame, area: Rect, focused: Option<&PageFocus>, state: &DisplayState) {
// Row 0 Message 1
if state.chat_msg1.is_empty() {
f.render_widget(Paragraph::new("(no messages)").white(), row(area, 0));
} else {
f.render_widget(Paragraph::new(format!(">{}", state.chat_msg1.as_str())).green(), row(area, 0));
}
// Row 1 Message 2
if !state.chat_msg2.is_empty() {
f.render_widget(Paragraph::new(format!(">{}", state.chat_msg2.as_str())).white(), row(area, 1));
}
// Row 3 Nav bar
render_nav_bar(f, row(area, 2), focused);
}
/// Nav bar: --[<]-------[>]--
fn render_nav_bar(f: &mut ratatui::Frame, area: Rect, focused: Option<&PageFocus>) {
let prev_sel = focused == Some(&PageFocus::NavPrev);
let next_sel = focused == Some(&PageFocus::NavNext);
let prev = if prev_sel { "[<]" } else { " < " };
let next = if next_sel { "[>]" } else { " > " };
// Build the line: --[<]-------[>]--
let line = format!("--{}-------{}--", prev, next);
f.render_widget(
Paragraph::new(line).style(ratatui::style::Style::default().white()),
area,
);
}

View File

@@ -1,79 +1,13 @@
// src/i2c/com.rs
use embassy_executor::task;
use embassy_time::{Duration, Timer};
use esp_hal::{
i2c::master::{Config, I2c},
peripherals::Peripherals,
};
use ssd1306::mode::BufferedGraphicsMode;
use log::info;
#[task]
pub async fn display_task() {
use mousefood::{EmbeddedBackend, EmbeddedBackendConfig};
use ratatui::{
layout::{Constraint, Direction, Layout},
widgets::{Block, Borders, Paragraph},
Terminal,
};
use ssd1306::{prelude::*, I2CDisplayInterface, Ssd1306};
let peripherals = unsafe { Peripherals::steal() };
let i2c = I2c::new(peripherals.I2C0, Config::default())
.expect("Failed to initialize I2C")
.with_sda(peripherals.GPIO21)
.with_scl(peripherals.GPIO22);
let interface = I2CDisplayInterface::new(i2c);
let mut display = Ssd1306::new(interface, DisplaySize128x64, DisplayRotation::Rotate0)
.into_buffered_graphics_mode();
display.init().unwrap();
let config = EmbeddedBackendConfig {
flush_callback: alloc::boxed::Box::new(|display| {
let d: &mut Ssd1306<_, _, BufferedGraphicsMode<DisplaySize128x64>> = display;
d.flush().unwrap();
}),
..Default::default()
};
let backend = EmbeddedBackend::new(&mut display, config);
let mut terminal = Terminal::new(backend).unwrap();
let mut counter = 0;
loop {
terminal
.draw(|f| {
let chunks = Layout::default()
.direction(Direction::Vertical)
.constraints([Constraint::Length(3), Constraint::Min(0)])
.split(f.area());
f.render_widget(
Block::default().title(" ESP32 Status ").borders(Borders::ALL),
chunks[0],
);
let content = alloc::format!("MQTT Active\nCounter: {}", counter);
f.render_widget(
Paragraph::new(content).block(
Block::default().borders(Borders::LEFT | Borders::RIGHT | Borders::BOTTOM),
),
chunks[1],
);
})
.unwrap();
counter += 1;
Timer::after(Duration::from_millis(1000)).await;
}
}
#[task]
#[embassy_executor::task]
pub async fn i2c_check() {
let peripherals = unsafe { Peripherals::steal() };
let mut i2c = I2c::new(peripherals.I2C0, Config::default())

View File

@@ -2,4 +2,7 @@
extern crate alloc;
pub mod mqtt;
pub mod i2c;
pub mod bus;
pub mod contracts;
pub mod display;
pub mod mpu;

View File

@@ -0,0 +1,17 @@
// src/mpu/api.rs
//! Public API for the MPU6050 feature.
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::{Channel, Receiver, Sender};
use crate::contracts::ImuReading;
const QUEUE_SIZE: usize = 16;
pub static IMU_CHANNEL: Channel<CriticalSectionRawMutex, ImuReading, QUEUE_SIZE> = Channel::new();
pub fn events() -> Receiver<'static, CriticalSectionRawMutex, ImuReading, QUEUE_SIZE> {
IMU_CHANNEL.receiver()
}
pub(crate) fn sender() -> Sender<'static, CriticalSectionRawMutex, ImuReading, QUEUE_SIZE> {
IMU_CHANNEL.sender()
}

View File

@@ -0,0 +1,241 @@
// src/mpu/driver.rs
//! MPU6050 driver using raw register I/O.
use embedded_hal::i2c::I2c;
/// MPU6050 register addresses
mod reg {
pub const PWR_MGMT_1: u8 = 0x6B;
pub const CONFIG: u8 = 0x1A;
pub const GYRO_CONFIG: u8 = 0x1B;
pub const ACCEL_CONFIG: u8 = 0x1C;
pub const ACCEL_XOUT_H: u8 = 0x3B; // Start of 14-byte burst read
pub const WHO_AM_I: u8 = 0x75;
}
/// Expected WHO_AM_I value for MPU6050
const MPU6050_WHO_AM_I: u8 = 0x68;
/// MPU6050 accelerometer full-scale range
#[derive(Clone, Copy, Debug, Default)]
pub enum AccelRange {
#[default]
G2 = 0, // ±2g -> 16384 LSB/g
G4 = 1, // ±4g -> 8192 LSB/g
G8 = 2, // ±8g -> 4096 LSB/g
G16 = 3, // ±16g -> 2048 LSB/g
}
impl AccelRange {
/// LSB per g for this range
pub fn sensitivity(self) -> f32 {
match self {
AccelRange::G2 => 16384.0,
AccelRange::G4 => 8192.0,
AccelRange::G8 => 4096.0,
AccelRange::G16 => 2048.0,
}
}
}
/// MPU6050 gyroscope full-scale range
#[derive(Clone, Copy, Debug, Default)]
pub enum GyroRange {
#[default]
Dps250 = 0, // ±250°/s -> 131 LSB/°/s
Dps500 = 1, // ±500°/s -> 65.5 LSB/°/s
Dps1000 = 2, // ±1000°/s -> 32.8 LSB/°/s
Dps2000 = 3, // ±2000°/s -> 16.4 LSB/°/s
}
impl GyroRange {
/// LSB per degree/second for this range
pub fn sensitivity(self) -> f32 {
match self {
GyroRange::Dps250 => 131.0,
GyroRange::Dps500 => 65.5,
GyroRange::Dps1000 => 32.8,
GyroRange::Dps2000 => 16.4,
}
}
}
/// Raw sensor data from a single read
#[derive(Clone, Copy, Debug, Default)]
pub struct RawReading {
pub accel: [i16; 3], // X, Y, Z
pub gyro: [i16; 3], // X, Y, Z
pub temp: i16,
}
/// MPU6050 driver
pub struct Mpu6050<I> {
i2c: I,
addr: u8,
accel_range: AccelRange,
gyro_range: GyroRange,
}
impl<I> Mpu6050<I> {
/// Create a new MPU6050 driver.
///
/// Default I2C address is 0x68. Use 0x69 if AD0 pin is high.
pub fn new(i2c: I, addr: u8) -> Self {
Self {
i2c,
addr,
accel_range: AccelRange::default(),
gyro_range: GyroRange::default(),
}
}
/// Create with default address 0x68
pub fn new_default(i2c: I) -> Self {
Self::new(i2c, 0x68)
}
/// Release the I2C peripheral
pub fn release(self) -> I {
self.i2c
}
/// Get current accelerometer range
pub fn accel_range(&self) -> AccelRange {
self.accel_range
}
/// Get current gyroscope range
pub fn gyro_range(&self) -> GyroRange {
self.gyro_range
}
}
impl<I, E> Mpu6050<I>
where
I: I2c<Error = E>,
{
/// Initialize the sensor with default configuration.
///
/// - Wakes up the device (exits sleep mode)
/// - Sets DLPF to ~44Hz bandwidth
/// - Sets accel range to ±2g
/// - Sets gyro range to ±250°/s
///
/// Call this once after creating the driver.
/// Consider adding a ~50ms delay after init before first read.
pub fn init(&mut self) -> Result<(), E> {
// Wake up (clear sleep bit in PWR_MGMT_1)
self.write_reg(reg::PWR_MGMT_1, 0x00)?;
// Set DLPF (Digital Low Pass Filter) to ~44Hz
// CONFIG register, bits 2:0 = DLPF_CFG
self.write_reg(reg::CONFIG, 0x03)?;
// Set accelerometer range (default ±2g)
self.write_reg(reg::ACCEL_CONFIG, (self.accel_range as u8) << 3)?;
// Set gyroscope range (default ±250°/s)
self.write_reg(reg::GYRO_CONFIG, (self.gyro_range as u8) << 3)?;
Ok(())
}
/// Verify the device is responding and is an MPU6050.
///
/// Returns true if WHO_AM_I register returns expected value.
pub fn verify(&mut self) -> Result<bool, E> {
let who = self.read_reg(reg::WHO_AM_I)?;
Ok(who == MPU6050_WHO_AM_I)
}
/// Set accelerometer full-scale range.
///
/// Takes effect immediately.
pub fn set_accel_range(&mut self, range: AccelRange) -> Result<(), E> {
self.accel_range = range;
self.write_reg(reg::ACCEL_CONFIG, (range as u8) << 3)
}
/// Set gyroscope full-scale range.
///
/// Takes effect immediately.
pub fn set_gyro_range(&mut self, range: GyroRange) -> Result<(), E> {
self.gyro_range = range;
self.write_reg(reg::GYRO_CONFIG, (range as u8) << 3)
}
/// Read all sensor data in a single burst.
///
/// This reads 14 bytes starting at ACCEL_XOUT_H:
/// - Accelerometer X, Y, Z (6 bytes)
/// - Temperature (2 bytes)
/// - Gyroscope X, Y, Z (6 bytes)
///
/// Returns raw values; use `convert_reading` for physical units.
pub fn read_raw(&mut self) -> Result<RawReading, E> {
let mut buf = [0u8; 14];
self.i2c.write_read(self.addr, &[reg::ACCEL_XOUT_H], &mut buf)?;
Ok(RawReading {
accel: [
i16::from_be_bytes([buf[0], buf[1]]),
i16::from_be_bytes([buf[2], buf[3]]),
i16::from_be_bytes([buf[4], buf[5]]),
],
temp: i16::from_be_bytes([buf[6], buf[7]]),
gyro: [
i16::from_be_bytes([buf[8], buf[9]]),
i16::from_be_bytes([buf[10], buf[11]]),
i16::from_be_bytes([buf[12], buf[13]]),
],
})
}
/// Convert raw reading to physical units.
///
/// Returns (accel_g, gyro_dps, temp_c)
pub fn convert_reading(&self, raw: &RawReading) -> ([f32; 3], [f32; 3], f32) {
let accel_sens = self.accel_range.sensitivity();
let gyro_sens = self.gyro_range.sensitivity();
let accel_g = [
raw.accel[0] as f32 / accel_sens,
raw.accel[1] as f32 / accel_sens,
raw.accel[2] as f32 / accel_sens,
];
let gyro_dps = [
raw.gyro[0] as f32 / gyro_sens,
raw.gyro[1] as f32 / gyro_sens,
raw.gyro[2] as f32 / gyro_sens,
];
// Temperature formula from datasheet:
// Temp in °C = (TEMP_OUT / 340.0) + 36.53
let temp_c = (raw.temp as f32 / 340.0) + 36.53;
(accel_g, gyro_dps, temp_c)
}
/// Read and convert in one call.
///
/// Convenience method that combines `read_raw` and `convert_reading`.
pub fn read(&mut self) -> Result<([f32; 3], [f32; 3], f32), E> {
let raw = self.read_raw()?;
Ok(self.convert_reading(&raw))
}
// ─────────────────────────────────────────────────────────────────
// Low-level register access
// ─────────────────────────────────────────────────────────────────
fn write_reg(&mut self, reg: u8, val: u8) -> Result<(), E> {
self.i2c.write(self.addr, &[reg, val])
}
fn read_reg(&mut self, reg: u8) -> Result<u8, E> {
let mut buf = [0u8];
self.i2c.write_read(self.addr, &[reg], &mut buf)?;
Ok(buf[0])
}
}

View File

@@ -0,0 +1,6 @@
// src/mpu/mod.rs
//! MPU6050 accelerometer/gyroscope
pub mod api;
pub mod driver;
pub mod task;

View File

@@ -0,0 +1,142 @@
// src/mpu/task.rs
//! MPU6050 sampling task.
//!
//! This task:
//! 1. Initializes the MPU6050 sensor
//! 2. Continuously reads sensor data at a fixed rate
//! 3. Publishes readings to the IMU channel
use embassy_time::{Duration, Instant, Timer};
use log::{error, info, warn};
use crate::bus::I2cDevice;
use crate::contracts::ImuReading;
use crate::mpu::api::sender;
use crate::mpu::driver::Mpu6050;
/// Sampling interval in milliseconds.
/// 50ms = 20Hz
const SAMPLE_INTERVAL_MS: u64 = 50;
/// MPU6050 I2C address (0x68 with AD0 low, 0x69 with AD0 high)
const MPU_ADDR: u8 = 0x68;
/// The MPU6050 sampling task.
///
/// # Arguments
/// * `i2c` - An I2C device handle from the shared bus
///
/// # Panics
/// Does not panic; logs errors and retries on failure.
#[embassy_executor::task]
pub async fn mpu_task(i2c: I2cDevice) {
info!("MPU task starting...");
let mut mpu = Mpu6050::new(i2c, MPU_ADDR);
// Initialize with retries
let mut init_attempts = 0;
loop {
init_attempts += 1;
// Verify device is present
match mpu.verify() {
Ok(true) => {
info!("MPU6050 detected at 0x{:02X}", MPU_ADDR);
}
Ok(false) => {
warn!(
"Device at 0x{:02X} is not MPU6050 (attempt {})",
MPU_ADDR, init_attempts
);
Timer::after(Duration::from_secs(2)).await;
continue;
}
Err(_) => {
warn!(
"I2C error verifying MPU6050 (attempt {})",
init_attempts
);
Timer::after(Duration::from_secs(2)).await;
continue;
}
}
// Initialize sensor
match mpu.init() {
Ok(()) => {
info!("MPU6050 initialized successfully");
break;
}
Err(_) => {
error!("MPU6050 init failed (attempt {})", init_attempts);
Timer::after(Duration::from_secs(2)).await;
continue;
}
}
}
// Allow sensor to stabilize after wake-up
Timer::after(Duration::from_millis(100)).await;
info!(
"MPU task entering sampling loop ({}ms interval)",
SAMPLE_INTERVAL_MS
);
let tx = sender();
let mut consecutive_errors = 0u32;
let mut sent_count: u32 = 0;
loop {
let start = Instant::now();
match mpu.read() {
Ok((accel_g, gyro_dps, temp_c)) => {
consecutive_errors = 0;
let reading = ImuReading {
accel_g,
gyro_dps,
temp_c,
timestamp_ms: start.as_millis(),
};
sent_count = sent_count.wrapping_add(1);
if tx.try_send(reading).is_ok() {
if sent_count % 20 == 0 {
info!(
"IMU send#{} ax:{:.2} ay:{:.2} az:{:.2} t:{:.1}",
sent_count, accel_g[0], accel_g[1], accel_g[2], temp_c
);
}
} else if sent_count % 20 == 0 {
info!("IMU drop: channel full ({} sent)", sent_count);
}
}
Err(_) => {
consecutive_errors += 1;
if consecutive_errors == 1 || consecutive_errors % 10 == 0 {
warn!("MPU read error (consecutive: {})", consecutive_errors);
}
// If too many errors, try to reinitialize
if consecutive_errors >= 50 {
error!("Too many MPU errors, attempting reinit...");
if mpu.init().is_ok() {
info!("MPU reinit successful");
consecutive_errors = 0;
Timer::after(Duration::from_millis(100)).await;
}
}
}
}
// Maintain a steady period
let elapsed = start.elapsed();
let target = Duration::from_millis(SAMPLE_INTERVAL_MS);
if elapsed < target {
Timer::after(target - elapsed).await;
}
}
}

View File

@@ -1,27 +1,37 @@
// src/mqtt/client.rs
use embassy_futures::select::{select, Either};
use embassy_net::{tcp::TcpSocket, Stack};
use embassy_time::{Duration, Timer};
use log::info;
use embassy_time::{Duration, Timer, Instant};
use embassy_futures::select::{select, Either};
use rust_mqtt::client::client::MqttClient;
use rust_mqtt::client::client_config::{ClientConfig, MqttVersion};
use rust_mqtt::packet::v5::publish_packet::QualityOfService;
use rust_mqtt::packet::v5::reason_codes::ReasonCode;
use rust_mqtt::utils::rng_generator::CountingRng;
use static_cell::ConstStaticCell;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::mutex::Mutex;
use embassy_sync::channel::{Channel, Receiver};
use heapless::{String as HString, Vec as HVec};
use embassy_sync::signal::Signal;
use heapless::{String, Vec};
use static_cell::ConstStaticCell;
use core::fmt::Write;
use log::{info, warn};
use crate::mqtt::config::mqtt_broker_endpoint;
use crate::contracts::ImuReading;
const RECONNECT_DELAY_SECS: u64 = 5;
const KEEPALIVE_SECS: u64 = 60;
const PING_PERIOD: Duration = Duration::from_secs(KEEPALIVE_SECS / 2);
const SOCKET_POLL_TIMEOUT: Duration = Duration::from_secs(1);
const PING_TIMEOUT: Duration = Duration::from_secs(5);
// Must be > PING_PERIOD, ideally > KEEPALIVE
const NO_SUCCESS_TIMEOUT: Duration = Duration::from_secs(120);
const NO_IMU_SIG_WARN: Duration = Duration::from_secs(10);
const SUBS_MAX: usize = 8;
// Limits for small, static buffers (no heap)
// Limits for static buffers
pub const TOPIC_MAX: usize = 128;
pub const PAYLOAD_MAX: usize = 512;
const COMMAND_QUEUE: usize = 8;
@@ -31,7 +41,7 @@ const EVENT_QUEUE: usize = 8;
static TCP_RX_BUFFER: ConstStaticCell<[u8; 2048]> = ConstStaticCell::new([0; 2048]);
static TCP_TX_BUFFER: ConstStaticCell<[u8; 2048]> = ConstStaticCell::new([0; 2048]);
// MQTT client buffers (separate from the TcpSocket's buffers)
// MQTT client buffers (separate from the TcpSocket buffers)
static MQTT_TX_BUF: ConstStaticCell<[u8; 1024]> = ConstStaticCell::new([0; 1024]);
static MQTT_RX_BUF: ConstStaticCell<[u8; 1024]> = ConstStaticCell::new([0; 1024]);
@@ -40,14 +50,14 @@ type Client<'a, 'net> = MqttClient<'a, TcpSocket<'net>, 8, CountingRng>;
#[derive(Clone)]
pub struct IncomingMsg {
pub topic: HString<TOPIC_MAX>,
pub payload: HVec<u8, PAYLOAD_MAX>,
pub topic: String<TOPIC_MAX>,
pub payload: Vec<u8, PAYLOAD_MAX>,
}
#[derive(Clone)]
struct PublishMsg {
topic: HString<TOPIC_MAX>,
payload: HVec<u8, PAYLOAD_MAX>,
topic: String<TOPIC_MAX>,
payload: Vec<u8, PAYLOAD_MAX>,
qos: QualityOfService,
retain: bool,
}
@@ -55,13 +65,21 @@ struct PublishMsg {
#[derive(Clone)]
enum Command {
Publish(PublishMsg),
Subscribe(HString<TOPIC_MAX>),
Subscribe(String<TOPIC_MAX>),
}
// Command/info channels
static CMD_CHAN: Channel<CriticalSectionRawMutex, Command, COMMAND_QUEUE> = Channel::new();
static EVT_CHAN: Channel<CriticalSectionRawMutex, IncomingMsg, EVENT_QUEUE> = Channel::new();
// Public API
/// Latest-value + wake-up semantics for IMU publish payload (single consumer: MQTT task)
static IMU_SIG: Signal<CriticalSectionRawMutex, Vec<u8, PAYLOAD_MAX>> = Signal::new();
static SUBS: Mutex<CriticalSectionRawMutex, Vec<String<TOPIC_MAX>, SUBS_MAX>> =
Mutex::new(Vec::new());
/// Public API
pub async fn mqtt_publish(topic: &str, payload: &[u8], qos: QualityOfService, retain: bool) {
CMD_CHAN
.send(Command::Publish(PublishMsg {
@@ -73,8 +91,52 @@ pub async fn mqtt_publish(topic: &str, payload: &[u8], qos: QualityOfService, re
.await;
}
pub fn mqtt_try_publish(topic: &str, payload: &[u8], qos: QualityOfService, retain: bool) -> bool {
CMD_CHAN
.try_send(Command::Publish(PublishMsg {
topic: truncate_str::<TOPIC_MAX>(topic),
payload: truncate_payload(payload),
qos,
retain,
}))
.is_ok()
}
pub fn mqtt_set_imu(reading: ImuReading) {
// Encode JSON into a bounded buffer (no alloc::format!)
let payload = encode_imu_json(&reading);
IMU_SIG.signal(payload);
}
pub fn mqtt_set_imu_payload(payload: Vec<u8, PAYLOAD_MAX>) {
IMU_SIG.signal(payload);
}
pub fn encode_imu_json(reading: &ImuReading) -> Vec<u8, PAYLOAD_MAX> {
let mut s: String<256> = String::new();
let _ = write!(
&mut s,
"{{\"ax\":{:.2},\"ay\":{:.2},\"az\":{:.2},\"gx\":{:.1},\"gy\":{:.1},\"gz\":{:.1},\"t\":{:.1},\"ts\":{}}}",
reading.accel_g[0], reading.accel_g[1], reading.accel_g[2],
reading.gyro_dps[0], reading.gyro_dps[1], reading.gyro_dps[2],
reading.temp_c,
reading.timestamp_ms
);
let mut v: Vec<u8, PAYLOAD_MAX> = Vec::new();
let _ = v.extend_from_slice(s.as_bytes());
v
}
pub async fn mqtt_subscribe(topic: &str) {
CMD_CHAN.send(Command::Subscribe(truncate_str::<TOPIC_MAX>(topic))).await;
let t = truncate_str::<TOPIC_MAX>(topic);
{
let mut subs = SUBS.lock().await;
let exists = subs.iter().any(|s| s.as_str() == t.as_str());
if !exists {
let _ = subs.push(t.clone());
}
}
CMD_CHAN.send(Command::Subscribe(t)).await;
}
pub fn mqtt_events(
@@ -82,74 +144,32 @@ pub fn mqtt_events(
EVT_CHAN.receiver()
}
// Helper functions for memory-safe truncation
fn truncate_str<const N: usize>(s: &str) -> HString<N> {
let mut h = HString::new();
let _ = h.push_str(&s[..s.len().min(N)]);
/// Internals
fn truncate_str<const N: usize>(s: &str) -> String<N> {
let mut h = String::new();
if N == 0 {
return h;
}
if s.len() <= N {
let _ = h.push_str(s);
return h;
}
let mut cut = N;
while cut > 0 && !s.is_char_boundary(cut) {
cut -= 1;
}
let _ = h.push_str(&s[..cut]);
h
}
fn truncate_payload(data: &[u8]) -> HVec<u8, PAYLOAD_MAX> {
let mut v = HVec::new();
fn truncate_payload(data: &[u8]) -> Vec<u8, PAYLOAD_MAX> {
let mut v = Vec::new();
let _ = v.extend_from_slice(&data[..data.len().min(PAYLOAD_MAX)]);
v
}
// MQTT configuration and client setup
fn build_client_config() -> ClientConfig<'static, 8, CountingRng> {
let mut cfg = ClientConfig::new(MqttVersion::MQTTv5, CountingRng(0));
cfg.keep_alive = KEEPALIVE_SECS as u16;
cfg.add_client_id("esp32-client");
cfg
}
fn build_client<'a, 'net>(
socket: TcpSocket<'net>,
mqtt_tx: &'a mut [u8],
mqtt_rx: &'a mut [u8],
) -> Client<'a, 'net> {
let mqtt_tx_len = mqtt_tx.len();
let mqtt_rx_len = mqtt_rx.len();
MqttClient::new(socket, mqtt_tx, mqtt_tx_len, mqtt_rx, mqtt_rx_len, build_client_config())
}
// Connection lifecycle and main session loop
async fn connect_tcp<'net>(socket: &mut TcpSocket<'net>) -> Result<(), ()> {
match socket.connect(mqtt_broker_endpoint()).await {
Ok(_) => {
info!("Connected TCP to MQTT broker");
Ok(())
}
Err(e) => {
info!("TCP connect failed: {:?}", e);
Err(())
}
}
}
async fn connect_mqtt(client: &mut Client<'_, '_>) -> Result<(), ReasonCode> {
client.connect_to_broker().await
}
async fn run_loop(client: &mut Client<'_, '_>) -> Result<(), ReasonCode> {
let default_topic = "esp32/topic";
match client.subscribe_to_topic(default_topic).await {
Ok(_) => info!("Subscribed to '{}'", default_topic),
Err(e) => info!("Default subscribe failed: {:?}", e),
};
loop {
let net_or_ping = select(client.receive_message(), Timer::after(PING_PERIOD));
match select(CMD_CHAN.receive(), net_or_ping).await {
Either::First(cmd) => handle_command(client, cmd).await?,
Either::Second(Either::First(result)) => handle_incoming(result).await?,
Either::Second(Either::Second(_)) => client.send_ping().await?,
}
}
}
async fn handle_command(client: &mut Client<'_, '_>, cmd: Command) -> Result<(), ReasonCode> {
match cmd {
Command::Publish(msg) => {
@@ -158,25 +178,27 @@ async fn handle_command(client: &mut Client<'_, '_>, cmd: Command) -> Result<(),
.await
}
Command::Subscribe(topic) => {
client.subscribe_to_topic(topic.as_str()).await?;
let res = client.subscribe_to_topic(topic.as_str()).await;
if res.is_ok() {
info!("Subscribed to '{}'", topic);
Ok(())
}
res
}
}
}
async fn handle_incoming(result: Result<(&str, &[u8]), ReasonCode>) -> Result<(), ReasonCode> {
let (topic, payload) = result?;
EVT_CHAN
.send(IncomingMsg {
let msg = IncomingMsg {
topic: truncate_str::<TOPIC_MAX>(topic),
payload: truncate_payload(payload),
})
.await;
};
if EVT_CHAN.try_send(msg).is_err() {
warn!("MQTT EVT queue full, dropping incoming message");
}
Ok(())
}
// Session and reconnect control
async fn run_one_session(
stack: Stack<'static>,
tcp_rx: &mut [u8],
@@ -185,12 +207,24 @@ async fn run_one_session(
mqtt_rx: &mut [u8],
) -> Result<(), ()> {
let mut socket = TcpSocket::new(stack, tcp_rx, tcp_tx);
if connect_tcp(&mut socket).await.is_err() {
socket.set_timeout(Some(SOCKET_POLL_TIMEOUT * 10));
match socket.connect(mqtt_broker_endpoint()).await {
Ok(_) => info!("Connected TCP to MQTT broker"),
Err(e) => {
info!("TCP connect failed: {:#?}", e);
return Err(());
}
}
let mut client = build_client(socket, mqtt_tx, mqtt_rx);
match connect_mqtt(&mut client).await {
let mut cfg: ClientConfig<8, CountingRng> =
ClientConfig::new(MqttVersion::MQTTv5, CountingRng(0));
cfg.keep_alive = KEEPALIVE_SECS as u16;
cfg.add_client_id("esp32-client");
let mut client =
MqttClient::new(socket, mqtt_tx, mqtt_tx.len(), mqtt_rx, mqtt_rx.len(), cfg);
match client.connect_to_broker().await {
Ok(_) => info!("MQTT CONNACK received"),
Err(reason) => {
info!("MQTT connect failed: {:?}", reason);
@@ -198,10 +232,188 @@ async fn run_one_session(
}
}
run_loop(&mut client).await.map_err(|_| ())
// Re-subscribe after every (re)connect
let mut subs_snapshot: Vec<String<TOPIC_MAX>, SUBS_MAX> = Vec::new();
{
let subs = SUBS.lock().await;
for t in subs.iter() {
let _ = subs_snapshot.push(t.clone());
}
}
for t in subs_snapshot.iter() {
match client.subscribe_to_topic(t.as_str()).await {
Ok(_) => info!("Subscribed to '{}'", t),
Err(e) => {
warn!("MQTT resubscribe failed: {:?}", e);
return Err(());
}
}
}
let mut next_ping_at = Instant::now() + PING_PERIOD;
let cmd_rx = CMD_CHAN.receiver();
// Only restart the session after N consecutive IMU publish failures
let mut imu_tx_fail_streak: u8 = 0;
let mut hb_at = Instant::now() + Duration::from_secs(10);
let mut tx_ok: u32 = 0;
let mut tx_err: u32 = 0;
let mut rx_ok: u32 = 0;
let mut ping_ok: u32 = 0;
let mut last_ok = Instant::now(); // last successful MQTT I/O (tx/rx/ping)
let mut last_imu_sig = Instant::now(); // last time we received IMU_SIG in MQTT task
loop {
let now = Instant::now();
if now - last_ok > NO_SUCCESS_TIMEOUT {
warn!(
"MQTT no successful I/O for {:?} -> restart session",
now - last_ok
);
return Err(());
}
if now - last_imu_sig > NO_IMU_SIG_WARN {
// This is diagnostic: if core0 claims it's sending, but this prints, you have cross-core signaling loss.
warn!(
"MQTT hasn't received IMU_SIG for {:?} (core0->core1 sync likely broken)",
now - last_imu_sig
);
// Rate-limit the warning
last_imu_sig = now;
}
let ping_in = if next_ping_at > now { next_ping_at - now } else { Duration::from_secs(0) };
// Timebox receive_message() even if lower layers misbehave.
let recv_fut = async {
match select(client.receive_message(), Timer::after(SOCKET_POLL_TIMEOUT)).await {
Either::First(res) => Some(res),
Either::Second(_) => None,
}
};
// 4-way select using nested selects to avoid relying on select4()
match select(
select(cmd_rx.receive(), IMU_SIG.wait()),
select(recv_fut, Timer::after(ping_in)),
)
.await
{
// Command received
Either::First(Either::First(cmd)) => {
handle_command(&mut client, cmd).await.map_err(|_| ())?;
next_ping_at = Instant::now() + PING_PERIOD;
last_ok = Instant::now();
// Drain any additional queued commands quickly
while let Ok(cmd) = CMD_CHAN.try_receive() {
handle_command(&mut client, cmd).await.map_err(|_| ())?;
last_ok = Instant::now();
next_ping_at = Instant::now() + PING_PERIOD;
}
}
// IMU update signaled (latest value semantics)
Either::First(Either::Second(payload)) => {
last_imu_sig = Instant::now();
// Enable temporarily for diagnostics:
// info!("IMU_SIG received in MQTT task (len={})", payload.len());
// Timebox the publish so we don't hang forever inside send_message().await
let send_res = match select(
client.send_message("esp32/imu", &payload, QualityOfService::QoS0, false),
Timer::after(Duration::from_secs(5)),
)
.await
{
Either::First(res) => res,
Either::Second(_) => Err(ReasonCode::NetworkError),
};
match send_res {
Ok(_) => {
next_ping_at = Instant::now() + PING_PERIOD;
imu_tx_fail_streak = 0;
last_ok = Instant::now();
tx_ok = tx_ok.wrapping_add(1);
if (tx_ok % 10) == 0 {
info!(
"MQTT alive: tx_ok={} tx_err={} rx_ok={} streak={}",
tx_ok, tx_err, rx_ok, imu_tx_fail_streak
);
}
}
Err(e) => {
tx_err = tx_err.wrapping_add(1);
imu_tx_fail_streak = imu_tx_fail_streak.saturating_add(1);
warn!("MQTT IMU TX fail {}/5: {:?}", imu_tx_fail_streak, e);
if imu_tx_fail_streak >= 5 {
warn!("MQTT IMU TX fail 5x -> restart session");
return Err(());
}
}
}
}
// Incoming message (or None on timeout)
Either::Second(Either::First(opt)) => {
if let Some(res) = opt {
match res {
Ok((topic, payload)) => {
rx_ok = rx_ok.wrapping_add(1);
let _ = handle_incoming(Ok((topic, payload))).await;
last_ok = Instant::now();
imu_tx_fail_streak = 0;
next_ping_at = Instant::now() + PING_PERIOD;
}
Err(ReasonCode::NetworkError) => {
// idle tick
}
Err(e) => {
warn!("MQTT receive error (fatal): {:?}", e);
return Err(());
}
}
}
}
// Ping timer fired
Either::Second(Either::Second(_)) => {
if Instant::now() >= hb_at {
info!(
"MQTT hb tx_ok={} tx_err={} rx_ok={} ping_ok={} streak={}",
tx_ok, tx_err, rx_ok, ping_ok, imu_tx_fail_streak
);
hb_at = Instant::now() + Duration::from_secs(10);
}
let ping_res = match select(client.send_ping(), Timer::after(PING_TIMEOUT)).await {
Either::First(res) => res,
Either::Second(_) => Err(ReasonCode::NetworkError),
};
match ping_res {
Ok(_) => {
ping_ok = ping_ok.wrapping_add(1);
imu_tx_fail_streak = 0;
last_ok = Instant::now();
next_ping_at = Instant::now() + PING_PERIOD;
}
Err(e) => {
warn!("MQTT ping failed/timeout: {:?}", e);
return Err(());
}
}
}
}
}
}
// Main MQTT embassy task
#[embassy_executor::task]
pub async fn mqtt_task(stack: Stack<'static>) {
info!("MQTT task starting...");