4 Commits

Author SHA1 Message Date
Priec
5c12591524 changes to more modern way 2026-01-18 10:13:21 +01:00
Priec
6fe77a1286 my gosh, finally its readable 2026-01-18 00:44:50 +01:00
Priec
1cb6f3a3ee working everything properly well 2026-01-10 16:55:02 +01:00
Priec
fe4e48fbcc big changes 2026-01-10 10:54:50 +01:00
16 changed files with 1060 additions and 182 deletions

View File

@@ -53,6 +53,7 @@ shellHook = ''
rustc --version rustc --version
which xtensa-esp32-elf-gcc || echo " xtensa-esp32-elf-gcc not found in PATH" which xtensa-esp32-elf-gcc || echo " xtensa-esp32-elf-gcc not found in PATH"
echo "cargo espflash save-image --release --chip esp32 test.bin"
echo "" echo ""
echo "MQTT broker test (run manually in two terminals):" echo "MQTT broker test (run manually in two terminals):"
echo " Terminal 1:" echo " Terminal 1:"

View File

@@ -246,16 +246,6 @@ dependencies = [
"thiserror", "thiserror",
] ]
[[package]]
name = "defmt-rtt"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b2cac3b8a5644a9e02b75085ebad3b6deafdbdbdec04bb25086523828aa4dfd1"
dependencies = [
"critical-section",
"defmt 1.0.1",
]
[[package]] [[package]]
name = "delegate" name = "delegate"
version = "0.13.4" version = "0.13.4"
@@ -570,6 +560,16 @@ dependencies = [
"embedded-hal 1.0.0", "embedded-hal 1.0.0",
] ]
[[package]]
name = "embedded-hal-bus"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "513e0b3a8fb7d3013a8ae17a834283f170deaf7d0eeab0a7c1a36ad4dd356d22"
dependencies = [
"critical-section",
"embedded-hal 1.0.0",
]
[[package]] [[package]]
name = "embedded-io" name = "embedded-io"
version = "0.6.1" version = "0.6.1"
@@ -821,6 +821,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e7e3ab41e96093d7fd307e93bfc88bd646a8ff23036ebf809e116b18869f719" checksum = "3e7e3ab41e96093d7fd307e93bfc88bd646a8ff23036ebf809e116b18869f719"
dependencies = [ dependencies = [
"critical-section", "critical-section",
"defmt 1.0.1",
"document-features", "document-features",
"esp-metadata-generated", "esp-metadata-generated",
"log", "log",
@@ -1430,16 +1431,18 @@ dependencies = [
[[package]] [[package]]
name = "projekt_final" name = "projekt_final"
version = "0.1.0" version = "0.2.0"
dependencies = [ dependencies = [
"critical-section", "critical-section",
"defmt-rtt", "defmt 1.0.1",
"dotenvy", "dotenvy",
"embassy-executor", "embassy-executor",
"embassy-futures", "embassy-futures",
"embassy-net", "embassy-net",
"embassy-sync 0.7.2", "embassy-sync 0.7.2",
"embassy-time 0.5.0", "embassy-time 0.5.0",
"embedded-hal 1.0.0",
"embedded-hal-bus",
"embedded-io", "embedded-io",
"embedded-io-async", "embedded-io-async",
"esp-alloc", "esp-alloc",

View File

@@ -1,8 +1,8 @@
[package] [package]
edition = "2021" edition = "2021"
name = "projekt_final" name = "projekt_final"
rust-version = "1.86" rust-version = "1.89.0"
version = "0.1.0" version = "0.2.0"
[[bin]] [[bin]]
name = "projekt_final" name = "projekt_final"
@@ -34,7 +34,7 @@ esp-backtrace = { version = "0.17.0", features = [
"panic-handler", "panic-handler",
"println", "println",
] } ] }
esp-println = { version = "0.15.0", features = ["esp32", "log-04"] } esp-println = { version = "0.15.0", features = ["esp32", "log-04", "defmt-espflash"] }
# for more networking protocol support see https://crates.io/crates/edge-net # for more networking protocol support see https://crates.io/crates/edge-net
critical-section = "1.2.0" critical-section = "1.2.0"
embassy-executor = { version = "0.7.0", features = [ embassy-executor = { version = "0.7.0", features = [
@@ -67,13 +67,15 @@ smoltcp = { version = "0.12.0", default-features = false, features = [
] } ] }
static_cell = "2.1.1" static_cell = "2.1.1"
rust-mqtt = { version = "0.3.0", default-features = false, features = ["no_std"] } rust-mqtt = { version = "0.3.0", default-features = false, features = ["no_std"] }
defmt-rtt = "1.0.0"
embassy-futures = "0.1.2" embassy-futures = "0.1.2"
embassy-sync = "0.7.2" embassy-sync = "0.7.2"
heapless = "0.9.1" heapless = "0.9.1"
mousefood = { git = "https://github.com/j-g00da/mousefood", branch = "main", default-features = false } mousefood = { git = "https://github.com/j-g00da/mousefood", branch = "main", default-features = false }
ssd1306 = "0.10.0" ssd1306 = "0.10.0"
ratatui = { version = "0.30.0", default-features = false, features = ["macros", "all-widgets", "portable-atomic"] } ratatui = { version = "0.30.0", default-features = false, features = ["macros", "all-widgets", "portable-atomic"] }
embedded-hal-bus = "0.3.0"
embedded-hal = "1.0.0"
defmt = "1.0.1"
[build-dependencies] [build-dependencies]
dotenvy = "0.15.7" dotenvy = "0.15.7"

181
mqtt_display/old_main.rs Normal file
View File

@@ -0,0 +1,181 @@
// src/bin/main.rs
#![no_std]
#![no_main]
#![deny(
clippy::mem_forget,
reason = "mem::forget is generally not safe to do with esp_hal types"
)]
use embassy_executor::Spawner;
use embassy_futures::select::{select, Either};
use embassy_net::{Runner, StackResources};
use embassy_time::{Duration, Timer};
use esp_alloc as _;
use esp_backtrace as _;
use esp_hal::{clock::CpuClock, rng::Rng, timer::timg::TimerGroup};
use esp_wifi::{
init,
wifi::{ClientConfiguration, Configuration, WifiController, WifiDevice, WifiEvent, WifiState},
EspWifiController,
};
use log::info;
use rust_mqtt::packet::v5::publish_packet::QualityOfService;
use projekt_final::mqtt::client::{
mqtt_events, mqtt_publish, mqtt_subscribe, mqtt_task, IncomingMsg,
};
use defmt_rtt as _;
extern crate alloc;
esp_bootloader_esp_idf::esp_app_desc!();
macro_rules! mk_static {
($t:ty,$val:expr) => {{
static STATIC_CELL: static_cell::StaticCell<$t> = static_cell::StaticCell::new();
#[deny(unused_attributes)]
let x = STATIC_CELL.uninit().write(($val));
x
}};
}
const SSID: &str = env!("SSID");
const PASSWORD: &str = env!("PASSWORD");
#[esp_hal_embassy::main]
async fn main(spawner: Spawner) -> ! {
esp_println::logger::init_logger_from_env();
let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
let peripherals = esp_hal::init(config);
esp_alloc::heap_allocator!(size: 72 * 1024);
let timg0 = TimerGroup::new(peripherals.TIMG0);
let mut rng = Rng::new(peripherals.RNG);
let esp_wifi_ctrl = &*mk_static!(
EspWifiController<'static>,
init(timg0.timer0, rng.clone()).unwrap()
);
let (controller, interfaces) =
esp_wifi::wifi::new(&esp_wifi_ctrl, peripherals.WIFI).unwrap();
let wifi_interface = interfaces.sta;
let timg1 = TimerGroup::new(peripherals.TIMG1);
esp_hal_embassy::init(timg1.timer0);
let config = embassy_net::Config::dhcpv4(Default::default());
let seed = (rng.random() as u64) << 32 | rng.random() as u64;
// Init network stack
let (stack, runner) = embassy_net::new(
wifi_interface,
config,
mk_static!(StackResources<3>, StackResources::<3>::new()),
seed,
);
spawner.spawn(connection(controller)).ok();
spawner.spawn(net_task(runner)).ok();
// Wait for link up
loop {
if stack.is_link_up() {
break;
}
Timer::after(Duration::from_millis(500)).await;
}
info!("Waiting to get IP address...");
loop {
if let Some(config) = stack.config_v4() {
info!("Got IP: {}", config.address);
break;
}
Timer::after(Duration::from_millis(500)).await;
}
spawner.spawn(mqtt_task(stack)).expect("failed to spawn MQTT task");
info!("MQTT task started");
mqtt_publish("esp32/topic", b"hello from ESP32 (init)", QualityOfService::QoS1, false).await;
info!("Sent initial MQTT message");
mqtt_subscribe("esp32/topic").await;
// Get a receiver for incoming MQTT messages
let mqtt_rx = mqtt_events();
loop {
// Drive both: either process an MQTT message or publish periodically
match select(mqtt_rx.receive(), Timer::after(Duration::from_secs(5))).await
{
// Received inbound MQTT message (from broker)
Either::First(msg) => {
handle_incoming(msg);
}
// Time-based example publish
Either::Second(_) => {
// mqtt_publish(
// "esp32/topic",
// b"hello from main",
// QualityOfService::QoS1,
// false,
// )
// .await;
}
}
}
}
fn handle_incoming(msg: IncomingMsg) {
if let Ok(txt) = core::str::from_utf8(&msg.payload) {
info!("MAIN RX [{}]: {}", msg.topic.as_str(), txt);
info!("Received MQTT message -> topic: '{}', payload: '{}'", msg.topic.as_str(), txt);
} else {
info!("MAIN RX [{}]: {:?}", msg.topic.as_str(), msg.payload);
}
}
#[embassy_executor::task]
async fn connection(mut controller: WifiController<'static>) {
info!("start connection task");
info!("Device capabilities: {:?}", controller.capabilities());
loop {
match esp_wifi::wifi::wifi_state() {
WifiState::StaConnected => {
controller.wait_for_event(WifiEvent::StaDisconnected).await;
Timer::after(Duration::from_millis(5000)).await
}
_ => {}
}
if !matches!(controller.is_started(), Ok(true)) {
let client_config = Configuration::Client(ClientConfiguration {
ssid: SSID.into(),
password: PASSWORD.into(),
..Default::default()
});
controller.set_configuration(&client_config).unwrap();
info!("Starting wifi");
controller.start_async().await.unwrap();
info!("Wifi started!");
}
info!("About to connect...");
match controller.connect_async().await {
Ok(_) => info!("Wifi connected!"),
Err(e) => {
info!("Failed to connect to wifi: {e:?}");
Timer::after(Duration::from_millis(5000)).await
}
}
}
}
#[embassy_executor::task]
async fn net_task(mut runner: Runner<'static, WifiDevice<'static>>) {
runner.run().await
}

View File

@@ -8,29 +8,41 @@
)] )]
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_futures::select::{select, Either}; use embassy_futures::select::{select3, Either3};
use embassy_net::{Runner, StackResources}; use embassy_net::{Runner, StackResources};
use embassy_time::{Duration, Timer}; use embassy_time::{Duration, Timer};
use projekt_final::bus::I2cInner;
use esp_alloc as _; use esp_alloc as _;
use esp_backtrace as _; use esp_backtrace as _;
use esp_hal::{clock::CpuClock, rng::Rng, timer::timg::TimerGroup};
use esp_hal::{
clock::CpuClock,
i2c::master::{Config as I2cConfig, I2c},
rng::Rng,
timer::timg::TimerGroup,
};
use esp_wifi::{ use esp_wifi::{
init,
wifi::{ClientConfiguration, Configuration, WifiController, WifiDevice, WifiEvent, WifiState}, wifi::{ClientConfiguration, Configuration, WifiController, WifiDevice, WifiEvent, WifiState},
EspWifiController, EspWifiController,
}; };
use log::info; use log::info;
use rust_mqtt::packet::v5::publish_packet::QualityOfService; use rust_mqtt::packet::v5::publish_packet::QualityOfService;
use projekt_final::mqtt::client::{ use static_cell::StaticCell;
mqtt_events, mqtt_publish, mqtt_subscribe, mqtt_task, IncomingMsg, use core::cell::RefCell;
use projekt_final::{
bus,
display,
mpu,
mqtt::client::{mqtt_events, mqtt_publish, mqtt_subscribe, mqtt_task, IncomingMsg},
}; };
use projekt_final::i2c::com::i2c_check;
use projekt_final::i2c::com::display_task;
use defmt_rtt as _;
extern crate alloc; extern crate alloc;
use alloc::format;
esp_bootloader_esp_idf::esp_app_desc!(); static I2C_BUS: StaticCell<RefCell<I2cInner>> = StaticCell::new();
macro_rules! mk_static { macro_rules! mk_static {
($t:ty,$val:expr) => {{ ($t:ty,$val:expr) => {{
@@ -43,55 +55,112 @@ macro_rules! mk_static {
const SSID: &str = env!("SSID"); const SSID: &str = env!("SSID");
const PASSWORD: &str = env!("PASSWORD"); const PASSWORD: &str = env!("PASSWORD");
const MQTT_PUBLISH_DIVIDER: u32 = 10;
esp_bootloader_esp_idf::esp_app_desc!();
#[esp_hal_embassy::main] #[esp_hal_embassy::main]
async fn main(spawner: Spawner) -> ! { async fn main(spawner: Spawner) -> ! {
esp_println::logger::init_logger_from_env(); esp_println::logger::init_logger_from_env();
info!("===============================");
info!(" ESP32 IoT Firmware Starting");
info!("===============================");
let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max()); let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
let peripherals = esp_hal::init(config); let peripherals = esp_hal::init(config);
esp_alloc::heap_allocator!(size: 72 * 1024); esp_alloc::heap_allocator!(size: 72 * 1024);
info!("Initializing I2C bus...");
let i2c = I2c::new(peripherals.I2C0, I2cConfig::default())
.expect("Failed to create I2C instance")
.with_sda(peripherals.GPIO21)
.with_scl(peripherals.GPIO22)
.into_async();
let i2c_bus = I2C_BUS.init(RefCell::new(i2c));
let display_i2c = bus::new_device(i2c_bus);
let mpu_i2c = bus::new_device(i2c_bus);
info!("Initializing WiFi...");
let timg0 = TimerGroup::new(peripherals.TIMG0); let timg0 = TimerGroup::new(peripherals.TIMG0);
let mut rng = Rng::new(peripherals.RNG); let mut rng = Rng::new(peripherals.RNG);
let esp_wifi_ctrl = &*mk_static!( let esp_wifi_ctrl = mk_static!(
EspWifiController<'static>, EspWifiController<'static>,
init(timg0.timer0, rng.clone()).unwrap() esp_wifi::init(timg0.timer0, rng.clone()).unwrap()
); );
let (controller, interfaces) = let (controller, interfaces) =
esp_wifi::wifi::new(&esp_wifi_ctrl, peripherals.WIFI).unwrap(); esp_wifi::wifi::new(esp_wifi_ctrl, peripherals.WIFI).unwrap();
let wifi_interface = interfaces.sta; let wifi_interface = interfaces.sta;
let timg1 = TimerGroup::new(peripherals.TIMG1); let timg1 = TimerGroup::new(peripherals.TIMG1);
esp_hal_embassy::init(timg1.timer0); esp_hal_embassy::init(timg1.timer0);
let config = embassy_net::Config::dhcpv4(Default::default()); let net_config = embassy_net::Config::dhcpv4(Default::default());
let seed = (rng.random() as u64) << 32 | rng.random() as u64; let seed = (rng.random() as u64) << 32 | rng.random() as u64;
// Init network stack
let (stack, runner) = embassy_net::new( let (stack, runner) = embassy_net::new(
wifi_interface, wifi_interface,
config, net_config,
mk_static!(StackResources<3>, StackResources::<3>::new()), mk_static!(StackResources<3>, StackResources::<3>::new()),
seed, seed,
); );
spawner.spawn(connection(controller)).ok(); spawner.spawn(connection_task(controller)).expect("spawn connection_task");
spawner.spawn(net_task(runner)).ok(); spawner.spawn(net_task(runner)).expect("spawn net_task");
wait_for_network(stack).await;
spawner.spawn(mqtt_task(stack)).expect("spawn mqtt_task");
spawner.spawn(display::task::display_task(display_i2c)).expect("spawn display_task");
spawner.spawn(mpu::task::mpu_task(mpu_i2c)).expect("spawn mpu_task");
display::api::set_status("Booting...").await;
mqtt_subscribe("esp32/topic").await;
mqtt_publish("esp32/topic", b"online", QualityOfService::QoS1, false).await;
display::api::set_status("Running").await;
display::api::set_mqtt_status(true, 0).await;
let mqtt_rx = mqtt_events();
let imu_rx = mpu::api::events();
let mut imu_reading_count: u32 = 0;
let mut mqtt_msg_count: u32 = 0;
// Wait for link up
loop { loop {
if stack.is_link_up() { match select3(
break; mqtt_rx.receive(),
imu_rx.receive(),
Timer::after(Duration::from_secs(30)),
).await {
Either3::First(msg) => {
mqtt_msg_count += 1;
handle_mqtt_message(msg).await;
display::api::set_mqtt_status(true, mqtt_msg_count).await;
} }
Either3::Second(reading) => {
imu_reading_count += 1;
display::api::show_imu(reading).await;
if imu_reading_count % MQTT_PUBLISH_DIVIDER == 0 {
let payload = format!(
"{{\"ax\":{:.2},\"ay\":{:.2},\"az\":{:.2},\"t\":{:.1}}}",
reading.accel_g[0], reading.accel_g[1], reading.accel_g[2], reading.temp_c
);
mqtt_publish("esp32/imu", payload.as_bytes(), QualityOfService::QoS0, false).await;
}
}
Either3::Third(_) => {
info!("Heartbeat: {} IMU readings", imu_reading_count);
}
}
}
}
async fn wait_for_network(stack: embassy_net::Stack<'static>) {
loop {
if stack.is_link_up() { break; }
Timer::after(Duration::from_millis(500)).await; Timer::after(Duration::from_millis(500)).await;
} }
info!("Waiting to get IP address...");
loop { loop {
if let Some(config) = stack.config_v4() { if let Some(config) = stack.config_v4() {
info!("Got IP: {}", config.address); info!("Got IP: {}", config.address);
@@ -99,63 +168,24 @@ async fn main(spawner: Spawner) -> ! {
} }
Timer::after(Duration::from_millis(500)).await; Timer::after(Duration::from_millis(500)).await;
} }
spawner.spawn(mqtt_task(stack)).expect("failed to spawn MQTT task");
info!("MQTT task started");
spawner.spawn(display_task()).expect("failed to spawn Display task");
info!("I2C scan task started");
mqtt_publish("esp32/topic", b"hello from ESP32 (init)", QualityOfService::QoS1, false).await;
info!("Sent initial MQTT message");
mqtt_subscribe("esp32/topic").await;
// Get a receiver for incoming MQTT messages
let mqtt_rx = mqtt_events();
loop {
// Drive both: either process an MQTT message or publish periodically
match select(mqtt_rx.receive(), Timer::after(Duration::from_secs(5))).await
{
// Received inbound MQTT message (from broker)
Either::First(msg) => {
handle_incoming(msg);
}
// Time-based example publish
Either::Second(_) => {
// mqtt_publish(
// "esp32/topic",
// b"hello from main",
// QualityOfService::QoS1,
// false,
// )
// .await;
}
}
}
} }
fn handle_incoming(msg: IncomingMsg) { async fn handle_mqtt_message(msg: IncomingMsg) {
if let Ok(txt) = core::str::from_utf8(&msg.payload) { if let Ok(txt) = core::str::from_utf8(&msg.payload) {
info!("MAIN RX [{}]: {}", msg.topic.as_str(), txt); match txt {
info!("Received MQTT message -> topic: '{}', payload: '{}'", msg.topic.as_str(), txt); "clear" => { display::api::clear().await; }
} else { "status" => { mqtt_publish("esp32/status", b"running", QualityOfService::QoS1, false).await; }
info!("MAIN RX [{}]: {:?}", msg.topic.as_str(), msg.payload); _ => {}
}
} }
} }
#[embassy_executor::task] #[embassy_executor::task]
async fn connection(mut controller: WifiController<'static>) { async fn connection_task(mut controller: WifiController<'static>) {
info!("start connection task");
info!("Device capabilities: {:?}", controller.capabilities());
loop { loop {
match esp_wifi::wifi::wifi_state() { if esp_wifi::wifi::wifi_state() == WifiState::StaConnected {
WifiState::StaConnected => {
controller.wait_for_event(WifiEvent::StaDisconnected).await; controller.wait_for_event(WifiEvent::StaDisconnected).await;
Timer::after(Duration::from_millis(5000)).await Timer::after(Duration::from_millis(5000)).await;
}
_ => {}
} }
if !matches!(controller.is_started(), Ok(true)) { if !matches!(controller.is_started(), Ok(true)) {
let client_config = Configuration::Client(ClientConfiguration { let client_config = Configuration::Client(ClientConfiguration {
@@ -164,16 +194,13 @@ async fn connection(mut controller: WifiController<'static>) {
..Default::default() ..Default::default()
}); });
controller.set_configuration(&client_config).unwrap(); controller.set_configuration(&client_config).unwrap();
info!("Starting wifi"); info!("Wi-Fi starting...");
controller.start_async().await.unwrap(); controller.start_async().await.unwrap();
info!("Wifi started!");
} }
info!("About to connect...");
match controller.connect_async().await { match controller.connect_async().await {
Ok(_) => info!("Wifi connected!"), Ok(_) => info!("Wifi connected!"),
Err(e) => { Err(e) => {
info!("Failed to connect to wifi: {e:?}"); info!("Failed to connect to wifi: {e:#?}");
Timer::after(Duration::from_millis(5000)).await Timer::after(Duration::from_millis(5000)).await
} }
} }

View File

@@ -0,0 +1,23 @@
// src/bus/mod.rs
use core::cell::RefCell;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::mutex::Mutex;
use embedded_hal_bus::i2c::RefCellDevice;
use esp_hal::i2c::master::I2c;
use esp_hal::Async;
/// The underlying I2C peripheral type for esp-hal 1.0.0-rc.0
pub type I2cInner = I2c<'static, Async>;
/// We use RefCell to share the bus on a single core.
/// It's zero-overhead and safe because Embassy tasks don't preempt each other.
pub type SharedI2c = RefCell<I2cInner>;
/// A handle to a shared I2C device.
pub type I2cDevice = RefCellDevice<'static, I2cInner>;
/// Create a new I2C device handle from the shared bus.
pub fn new_device(bus: &'static SharedI2c) -> I2cDevice {
RefCellDevice::new(bus)
}

View File

@@ -0,0 +1,35 @@
// src/contracts.rs
//! Cross-feature message contracts.
//!
//! This is the ONLY coupling point between features.
//! Features depend on these types, not on each other.
use heapless::String as HString;
/// IMU sensor reading from MPU6050
#[derive(Clone, Copy, Default, Debug)]
pub struct ImuReading {
/// Acceleration in g (earth gravity units)
pub accel_g: [f32; 3],
/// Angular velocity in degrees per second
pub gyro_dps: [f32; 3],
/// Temperature in Celsius
pub temp_c: f32,
/// Timestamp in milliseconds since boot
pub timestamp_ms: u64,
}
/// Commands that can be sent to the display actor
#[derive(Clone, Debug)]
pub enum DisplayCommand {
/// Show IMU sensor data
SetImu(ImuReading),
/// Show a status line (max 32 chars)
SetStatus(HString<32>),
/// Show an error message (max 64 chars)
ShowError(HString<64>),
/// Show MQTT connection status
SetMqttStatus { connected: bool, msg_count: u32 },
/// Clear the display to default state
Clear,
}

View File

@@ -0,0 +1,81 @@
// src/display/api.rs
//! Public API for the display feature.
//!
//! Other parts of the system use this module to send commands to the display.
//! The actual rendering happens in `task.rs`.
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::{Channel, Receiver, TrySendError};
use heapless::String as HString;
use crate::contracts::{DisplayCommand, ImuReading};
/// Queue size for display commands.
/// Moderate size to handle bursts without dropping.
const QUEUE_SIZE: usize = 8;
/// Channel for sending commands to the display task.
pub(crate) static DISPLAY_CHANNEL: Channel<CriticalSectionRawMutex, DisplayCommand, QUEUE_SIZE> =
Channel::new();
/// Send a command to the display.
///
/// This is async and will wait if the queue is full.
/// For fire-and-forget, use `try_send`.
///
/// # Example
/// ```ignore
/// display::api::send(DisplayCommand::SetStatus("Hello".try_into().unwrap())).await;
/// ```
pub async fn send(cmd: DisplayCommand) {
DISPLAY_CHANNEL.send(cmd).await;
}
/// Try to send a command without waiting.
///
/// Returns `Err(cmd)` if the queue is full.
pub fn try_send(cmd: DisplayCommand) -> Result<(), DisplayCommand> {
DISPLAY_CHANNEL.try_send(cmd).map_err(|e| match e {
TrySendError::Full(command) => command,
})
}
/// Get a receiver for display commands (internal use).
///
/// Used by the display task to receive commands.
pub(crate) fn receiver() -> Receiver<'static, CriticalSectionRawMutex, DisplayCommand, QUEUE_SIZE> {
DISPLAY_CHANNEL.receiver()
}
// ─────────────────────────────────────────────────────────────────────────────
// Convenience functions for common commands
// ─────────────────────────────────────────────────────────────────────────────
/// Send IMU data to the display.
pub async fn show_imu(reading: ImuReading) {
send(DisplayCommand::SetImu(reading)).await;
}
/// Set the status line.
pub async fn set_status(text: &str) {
let mut s = HString::<32>::new();
let _ = s.push_str(&text[..text.len().min(32)]);
send(DisplayCommand::SetStatus(s)).await;
}
/// Show an error message.
pub async fn show_error(text: &str) {
let mut s = HString::<64>::new();
let _ = s.push_str(&text[..text.len().min(64)]);
send(DisplayCommand::ShowError(s)).await;
}
/// Update MQTT status indicator.
pub async fn set_mqtt_status(connected: bool, msg_count: u32) {
send(DisplayCommand::SetMqttStatus { connected, msg_count }).await;
}
/// Clear the display.
pub async fn clear() {
send(DisplayCommand::Clear).await;
}

View File

@@ -0,0 +1,5 @@
// src/display/mod.rs
//! SSD1306 OLED display
pub mod api;
pub mod task;

View File

@@ -0,0 +1,165 @@
// src/display/task.rs
//! SSD1306 display rendering task optimized for 0.91" 128x32 OLED.
use embassy_time::{Duration, Timer};
use log::{error, info};
use alloc::boxed::Box;
use alloc::format;
use heapless::String as HString;
use mousefood::{EmbeddedBackend, EmbeddedBackendConfig};
use ratatui::{
layout::{Constraint, Direction, Layout},
style::{Style, Stylize},
widgets::Paragraph,
Terminal,
};
use ssd1306::{
mode::BufferedGraphicsMode, prelude::*, I2CDisplayInterface, Ssd1306,
};
use crate::bus::I2cDevice;
use crate::contracts::{DisplayCommand, ImuReading};
use crate::display::api::receiver;
/// Display refresh interval in milliseconds.
const REFRESH_INTERVAL_MS: u64 = 100;
/// Internal state for what to render.
struct DisplayState {
status: HString<32>,
last_imu: Option<ImuReading>,
last_error: Option<HString<64>>,
mqtt_connected: bool,
mqtt_msg_count: u32,
}
impl Default for DisplayState {
fn default() -> Self {
Self {
status: HString::new(),
last_imu: None,
last_error: None,
mqtt_connected: false,
mqtt_msg_count: 0,
}
}
}
impl DisplayState {
fn apply_command(&mut self, cmd: DisplayCommand) {
match cmd {
DisplayCommand::SetImu(reading) => {
self.last_imu = Some(reading);
self.last_error = None;
}
DisplayCommand::SetStatus(s) => {
self.status = s;
}
DisplayCommand::ShowError(e) => {
self.last_error = Some(e);
}
DisplayCommand::SetMqttStatus { connected, msg_count } => {
self.mqtt_connected = connected;
self.mqtt_msg_count = msg_count;
}
DisplayCommand::Clear => {
self.last_imu = None;
self.last_error = None;
self.status = HString::new();
}
}
}
}
/// The display rendering task.
/// Designed for 0.91" 128x32 slim OLED screen.
#[embassy_executor::task]
pub async fn display_task(i2c: I2cDevice) {
info!("Display task starting...");
// Initialize SSD1306 display for 128x32 variant
let interface = I2CDisplayInterface::new(i2c);
let mut display = Ssd1306::new(interface, DisplaySize128x32, DisplayRotation::Rotate0)
.into_buffered_graphics_mode();
if let Err(e) = display.init() {
error!("Display init failed: {:?}", e);
loop {
Timer::after(Duration::from_secs(60)).await;
}
}
info!("SSD1306 display initialized (128x32)");
// Configure mousefood backend for ratatui
let config = EmbeddedBackendConfig {
flush_callback: Box::new(
|d: &mut Ssd1306<_, _, BufferedGraphicsMode<DisplaySize128x32>>| {
let _ = d.flush();
},
),
..Default::default()
};
let backend = EmbeddedBackend::new(&mut display, config);
let mut terminal = Terminal::new(backend).expect("terminal init failed");
let mut state = DisplayState::default();
let rx = receiver();
info!("Display task entering render loop");
loop {
// Process all pending commands (non-blocking)
while let Ok(cmd) = rx.try_receive() {
state.apply_command(cmd);
}
// Render current state
render_frame(&mut terminal, &state);
// Wait before next refresh
Timer::after(Duration::from_millis(REFRESH_INTERVAL_MS)).await;
}
}
/// Render a single frame compactly (for 128x32 OLED)
fn render_frame<B: ratatui::backend::Backend>(terminal: &mut Terminal<B>, state: &DisplayState) {
let _ = terminal.draw(|f| {
let chunks = Layout::default()
.direction(Direction::Vertical)
.constraints([
Constraint::Length(1),
Constraint::Min(0),
])
.split(f.area());
// Header: condensed status + MQTT indicator
let mqtt_indicator = if state.mqtt_connected { "M" } else { "m" };
let header_title = format!(
"[{}] {} #{}",
mqtt_indicator,
state.status.as_str(),
state.mqtt_msg_count
);
f.render_widget(Paragraph::new(header_title).style(Style::default().reversed()), chunks[0]);
// Body: minimal content (no borders, short text)
let body_content = if let Some(ref err) = state.last_error {
format!("ERR: {}", err.as_str())
} else if let Some(ref imu) = state.last_imu {
format!(
"A:{:.1} {:.1} {:.1}\nG:{:.0} {:.0} {:.0}\nT:{:.1}C",
imu.accel_g[0], imu.accel_g[1], imu.accel_g[2],
imu.gyro_dps[0], imu.gyro_dps[1], imu.gyro_dps[2],
imu.temp_c
)
} else {
format!("Waiting for data...")
};
f.render_widget(Paragraph::new(body_content), chunks[1]);
});
}

View File

@@ -2,4 +2,7 @@
extern crate alloc; extern crate alloc;
pub mod mqtt; pub mod mqtt;
pub mod i2c; pub mod bus;
pub mod contracts;
pub mod display;
pub mod mpu;

View File

@@ -0,0 +1,17 @@
// src/mpu/api.rs
//! Public API for the MPU6050 feature.
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::{Channel, Receiver, Sender};
use crate::contracts::ImuReading;
const QUEUE_SIZE: usize = 4;
pub(crate) static IMU_CHANNEL: Channel<CriticalSectionRawMutex, ImuReading, QUEUE_SIZE> = Channel::new();
pub fn events() -> Receiver<'static, CriticalSectionRawMutex, ImuReading, QUEUE_SIZE> {
IMU_CHANNEL.receiver()
}
pub(crate) fn sender() -> Sender<'static, CriticalSectionRawMutex, ImuReading, QUEUE_SIZE> {
IMU_CHANNEL.sender()
}

View File

@@ -0,0 +1,241 @@
// src/mpu/driver.rs
//! MPU6050 driver using raw register I/O.
use embedded_hal::i2c::I2c;
/// MPU6050 register addresses
mod reg {
pub const PWR_MGMT_1: u8 = 0x6B;
pub const CONFIG: u8 = 0x1A;
pub const GYRO_CONFIG: u8 = 0x1B;
pub const ACCEL_CONFIG: u8 = 0x1C;
pub const ACCEL_XOUT_H: u8 = 0x3B; // Start of 14-byte burst read
pub const WHO_AM_I: u8 = 0x75;
}
/// Expected WHO_AM_I value for MPU6050
const MPU6050_WHO_AM_I: u8 = 0x68;
/// MPU6050 accelerometer full-scale range
#[derive(Clone, Copy, Debug, Default)]
pub enum AccelRange {
#[default]
G2 = 0, // ±2g -> 16384 LSB/g
G4 = 1, // ±4g -> 8192 LSB/g
G8 = 2, // ±8g -> 4096 LSB/g
G16 = 3, // ±16g -> 2048 LSB/g
}
impl AccelRange {
/// LSB per g for this range
pub fn sensitivity(self) -> f32 {
match self {
AccelRange::G2 => 16384.0,
AccelRange::G4 => 8192.0,
AccelRange::G8 => 4096.0,
AccelRange::G16 => 2048.0,
}
}
}
/// MPU6050 gyroscope full-scale range
#[derive(Clone, Copy, Debug, Default)]
pub enum GyroRange {
#[default]
Dps250 = 0, // ±250°/s -> 131 LSB/°/s
Dps500 = 1, // ±500°/s -> 65.5 LSB/°/s
Dps1000 = 2, // ±1000°/s -> 32.8 LSB/°/s
Dps2000 = 3, // ±2000°/s -> 16.4 LSB/°/s
}
impl GyroRange {
/// LSB per degree/second for this range
pub fn sensitivity(self) -> f32 {
match self {
GyroRange::Dps250 => 131.0,
GyroRange::Dps500 => 65.5,
GyroRange::Dps1000 => 32.8,
GyroRange::Dps2000 => 16.4,
}
}
}
/// Raw sensor data from a single read
#[derive(Clone, Copy, Debug, Default)]
pub struct RawReading {
pub accel: [i16; 3], // X, Y, Z
pub gyro: [i16; 3], // X, Y, Z
pub temp: i16,
}
/// MPU6050 driver
pub struct Mpu6050<I> {
i2c: I,
addr: u8,
accel_range: AccelRange,
gyro_range: GyroRange,
}
impl<I> Mpu6050<I> {
/// Create a new MPU6050 driver.
///
/// Default I2C address is 0x68. Use 0x69 if AD0 pin is high.
pub fn new(i2c: I, addr: u8) -> Self {
Self {
i2c,
addr,
accel_range: AccelRange::default(),
gyro_range: GyroRange::default(),
}
}
/// Create with default address 0x68
pub fn new_default(i2c: I) -> Self {
Self::new(i2c, 0x68)
}
/// Release the I2C peripheral
pub fn release(self) -> I {
self.i2c
}
/// Get current accelerometer range
pub fn accel_range(&self) -> AccelRange {
self.accel_range
}
/// Get current gyroscope range
pub fn gyro_range(&self) -> GyroRange {
self.gyro_range
}
}
impl<I, E> Mpu6050<I>
where
I: I2c<Error = E>,
{
/// Initialize the sensor with default configuration.
///
/// - Wakes up the device (exits sleep mode)
/// - Sets DLPF to ~44Hz bandwidth
/// - Sets accel range to ±2g
/// - Sets gyro range to ±250°/s
///
/// Call this once after creating the driver.
/// Consider adding a ~50ms delay after init before first read.
pub fn init(&mut self) -> Result<(), E> {
// Wake up (clear sleep bit in PWR_MGMT_1)
self.write_reg(reg::PWR_MGMT_1, 0x00)?;
// Set DLPF (Digital Low Pass Filter) to ~44Hz
// CONFIG register, bits 2:0 = DLPF_CFG
self.write_reg(reg::CONFIG, 0x03)?;
// Set accelerometer range (default ±2g)
self.write_reg(reg::ACCEL_CONFIG, (self.accel_range as u8) << 3)?;
// Set gyroscope range (default ±250°/s)
self.write_reg(reg::GYRO_CONFIG, (self.gyro_range as u8) << 3)?;
Ok(())
}
/// Verify the device is responding and is an MPU6050.
///
/// Returns true if WHO_AM_I register returns expected value.
pub fn verify(&mut self) -> Result<bool, E> {
let who = self.read_reg(reg::WHO_AM_I)?;
Ok(who == MPU6050_WHO_AM_I)
}
/// Set accelerometer full-scale range.
///
/// Takes effect immediately.
pub fn set_accel_range(&mut self, range: AccelRange) -> Result<(), E> {
self.accel_range = range;
self.write_reg(reg::ACCEL_CONFIG, (range as u8) << 3)
}
/// Set gyroscope full-scale range.
///
/// Takes effect immediately.
pub fn set_gyro_range(&mut self, range: GyroRange) -> Result<(), E> {
self.gyro_range = range;
self.write_reg(reg::GYRO_CONFIG, (range as u8) << 3)
}
/// Read all sensor data in a single burst.
///
/// This reads 14 bytes starting at ACCEL_XOUT_H:
/// - Accelerometer X, Y, Z (6 bytes)
/// - Temperature (2 bytes)
/// - Gyroscope X, Y, Z (6 bytes)
///
/// Returns raw values; use `convert_reading` for physical units.
pub fn read_raw(&mut self) -> Result<RawReading, E> {
let mut buf = [0u8; 14];
self.i2c.write_read(self.addr, &[reg::ACCEL_XOUT_H], &mut buf)?;
Ok(RawReading {
accel: [
i16::from_be_bytes([buf[0], buf[1]]),
i16::from_be_bytes([buf[2], buf[3]]),
i16::from_be_bytes([buf[4], buf[5]]),
],
temp: i16::from_be_bytes([buf[6], buf[7]]),
gyro: [
i16::from_be_bytes([buf[8], buf[9]]),
i16::from_be_bytes([buf[10], buf[11]]),
i16::from_be_bytes([buf[12], buf[13]]),
],
})
}
/// Convert raw reading to physical units.
///
/// Returns (accel_g, gyro_dps, temp_c)
pub fn convert_reading(&self, raw: &RawReading) -> ([f32; 3], [f32; 3], f32) {
let accel_sens = self.accel_range.sensitivity();
let gyro_sens = self.gyro_range.sensitivity();
let accel_g = [
raw.accel[0] as f32 / accel_sens,
raw.accel[1] as f32 / accel_sens,
raw.accel[2] as f32 / accel_sens,
];
let gyro_dps = [
raw.gyro[0] as f32 / gyro_sens,
raw.gyro[1] as f32 / gyro_sens,
raw.gyro[2] as f32 / gyro_sens,
];
// Temperature formula from datasheet:
// Temp in °C = (TEMP_OUT / 340.0) + 36.53
let temp_c = (raw.temp as f32 / 340.0) + 36.53;
(accel_g, gyro_dps, temp_c)
}
/// Read and convert in one call.
///
/// Convenience method that combines `read_raw` and `convert_reading`.
pub fn read(&mut self) -> Result<([f32; 3], [f32; 3], f32), E> {
let raw = self.read_raw()?;
Ok(self.convert_reading(&raw))
}
// ─────────────────────────────────────────────────────────────────
// Low-level register access
// ─────────────────────────────────────────────────────────────────
fn write_reg(&mut self, reg: u8, val: u8) -> Result<(), E> {
self.i2c.write(self.addr, &[reg, val])
}
fn read_reg(&mut self, reg: u8) -> Result<u8, E> {
let mut buf = [0u8];
self.i2c.write_read(self.addr, &[reg], &mut buf)?;
Ok(buf[0])
}
}

View File

@@ -0,0 +1,6 @@
// src/mpu/mod.rs
//! MPU6050 accelerometer/gyroscope
pub mod api;
pub mod driver;
pub mod task;

View File

@@ -0,0 +1,132 @@
// src/mpu/task.rs
//! MPU6050 sampling task.
//!
//! This task:
//! 1. Initializes the MPU6050 sensor
//! 2. Continuously reads sensor data at a fixed rate
//! 3. Publishes readings to the IMU channel
use embassy_time::{Duration, Instant, Timer};
use log::{error, info, warn};
use crate::bus::I2cDevice;
use crate::contracts::ImuReading;
use crate::mpu::api::sender;
use crate::mpu::driver::Mpu6050;
/// Sampling interval in milliseconds.
/// 50ms = 20Hz, reasonable for display updates.
const SAMPLE_INTERVAL_MS: u64 = 50;
/// MPU6050 I2C address (0x68 with AD0 low, 0x69 with AD0 high)
const MPU_ADDR: u8 = 0x68;
/// The MPU6050 sampling task.
///
/// # Arguments
/// * `i2c` - An I2C device handle from the shared bus
///
/// # Panics
/// Does not panic; logs errors and retries on failure.
#[embassy_executor::task]
pub async fn mpu_task(i2c: I2cDevice) {
info!("MPU task starting...");
let mut mpu = Mpu6050::new(i2c, MPU_ADDR);
// Initialize with retries
let mut init_attempts = 0;
loop {
init_attempts += 1;
// Verify device is present
match mpu.verify() {
Ok(true) => {
info!("MPU6050 detected at 0x{:02X}", MPU_ADDR);
}
Ok(false) => {
warn!(
"Device at 0x{:02X} is not MPU6050 (attempt {})",
MPU_ADDR, init_attempts
);
Timer::after(Duration::from_secs(2)).await;
continue;
}
Err(_e) => {
warn!(
"I2C error verifying MPU6050 (attempt {})",
init_attempts
);
Timer::after(Duration::from_secs(2)).await;
continue;
}
}
// Initialize sensor
match mpu.init() {
Ok(()) => {
info!("MPU6050 initialized successfully");
break;
}
Err(_e) => {
error!("MPU6050 init failed (attempt {})", init_attempts);
Timer::after(Duration::from_secs(2)).await;
continue;
}
}
}
// Allow sensor to stabilize after wake-up
Timer::after(Duration::from_millis(100)).await;
info!("MPU task entering sampling loop ({}ms interval)", SAMPLE_INTERVAL_MS);
let tx = sender();
let mut consecutive_errors = 0u32;
loop {
let start = Instant::now();
match mpu.read() {
Ok((accel_g, gyro_dps, temp_c)) => {
consecutive_errors = 0;
let reading = ImuReading {
accel_g,
gyro_dps,
temp_c,
timestamp_ms: start.as_millis(),
};
// Try to send; if queue is full, drop oldest by using try_send
// This ensures we never block the sampling loop
if tx.try_send(reading).is_err() {
// Queue full - that's okay, main will get the next one
}
}
Err(_e) => {
consecutive_errors += 1;
if consecutive_errors == 1 || consecutive_errors % 10 == 0 {
warn!("MPU read error (consecutive: {})", consecutive_errors);
}
// If too many errors, try to reinitialize
if consecutive_errors >= 50 {
error!("Too many MPU errors, attempting reinit...");
if mpu.init().is_ok() {
info!("MPU reinit successful");
consecutive_errors = 0;
Timer::after(Duration::from_millis(100)).await;
}
}
}
}
// Sleep for remainder of interval
let elapsed = start.elapsed();
let target = Duration::from_millis(SAMPLE_INTERVAL_MS);
if elapsed < target {
Timer::after(target - elapsed).await;
}
}
}

View File

@@ -2,18 +2,17 @@
use embassy_futures::select::{select, Either}; use embassy_futures::select::{select, Either};
use embassy_net::{tcp::TcpSocket, Stack}; use embassy_net::{tcp::TcpSocket, Stack};
use embassy_time::{Duration, Timer}; use embassy_time::{Duration, Timer};
use log::info;
use rust_mqtt::client::client::MqttClient; use rust_mqtt::client::client::MqttClient;
use rust_mqtt::client::client_config::{ClientConfig, MqttVersion}; use rust_mqtt::client::client_config::{ClientConfig, MqttVersion};
use rust_mqtt::packet::v5::publish_packet::QualityOfService; use rust_mqtt::packet::v5::publish_packet::QualityOfService;
use rust_mqtt::packet::v5::reason_codes::ReasonCode; use rust_mqtt::packet::v5::reason_codes::ReasonCode;
use rust_mqtt::utils::rng_generator::CountingRng; use rust_mqtt::utils::rng_generator::CountingRng;
use static_cell::ConstStaticCell;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex; use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::{Channel, Receiver}; use embassy_sync::channel::{Channel, Receiver};
use heapless::{String, Vec};
use heapless::{String as HString, Vec as HVec}; use static_cell::ConstStaticCell;
use log::info;
use crate::mqtt::config::mqtt_broker_endpoint; use crate::mqtt::config::mqtt_broker_endpoint;
@@ -21,7 +20,7 @@ const RECONNECT_DELAY_SECS: u64 = 5;
const KEEPALIVE_SECS: u64 = 60; const KEEPALIVE_SECS: u64 = 60;
const PING_PERIOD: Duration = Duration::from_secs(KEEPALIVE_SECS / 2); const PING_PERIOD: Duration = Duration::from_secs(KEEPALIVE_SECS / 2);
// Limits for small, static buffers (no heap) // Limits for static buffers
pub const TOPIC_MAX: usize = 128; pub const TOPIC_MAX: usize = 128;
pub const PAYLOAD_MAX: usize = 512; pub const PAYLOAD_MAX: usize = 512;
const COMMAND_QUEUE: usize = 8; const COMMAND_QUEUE: usize = 8;
@@ -31,7 +30,7 @@ const EVENT_QUEUE: usize = 8;
static TCP_RX_BUFFER: ConstStaticCell<[u8; 2048]> = ConstStaticCell::new([0; 2048]); static TCP_RX_BUFFER: ConstStaticCell<[u8; 2048]> = ConstStaticCell::new([0; 2048]);
static TCP_TX_BUFFER: ConstStaticCell<[u8; 2048]> = ConstStaticCell::new([0; 2048]); static TCP_TX_BUFFER: ConstStaticCell<[u8; 2048]> = ConstStaticCell::new([0; 2048]);
// MQTT client buffers (separate from the TcpSocket's buffers) // MQTT client buffers (separate from the TcpSocket buffers)
static MQTT_TX_BUF: ConstStaticCell<[u8; 1024]> = ConstStaticCell::new([0; 1024]); static MQTT_TX_BUF: ConstStaticCell<[u8; 1024]> = ConstStaticCell::new([0; 1024]);
static MQTT_RX_BUF: ConstStaticCell<[u8; 1024]> = ConstStaticCell::new([0; 1024]); static MQTT_RX_BUF: ConstStaticCell<[u8; 1024]> = ConstStaticCell::new([0; 1024]);
@@ -40,14 +39,14 @@ type Client<'a, 'net> = MqttClient<'a, TcpSocket<'net>, 8, CountingRng>;
#[derive(Clone)] #[derive(Clone)]
pub struct IncomingMsg { pub struct IncomingMsg {
pub topic: HString<TOPIC_MAX>, pub topic: String<TOPIC_MAX>,
pub payload: HVec<u8, PAYLOAD_MAX>, pub payload: Vec<u8, PAYLOAD_MAX>,
} }
#[derive(Clone)] #[derive(Clone)]
struct PublishMsg { struct PublishMsg {
topic: HString<TOPIC_MAX>, topic: String<TOPIC_MAX>,
payload: HVec<u8, PAYLOAD_MAX>, payload: Vec<u8, PAYLOAD_MAX>,
qos: QualityOfService, qos: QualityOfService,
retain: bool, retain: bool,
} }
@@ -55,7 +54,7 @@ struct PublishMsg {
#[derive(Clone)] #[derive(Clone)]
enum Command { enum Command {
Publish(PublishMsg), Publish(PublishMsg),
Subscribe(HString<TOPIC_MAX>), Subscribe(String<TOPIC_MAX>),
} }
static CMD_CHAN: Channel<CriticalSectionRawMutex, Command, COMMAND_QUEUE> = Channel::new(); static CMD_CHAN: Channel<CriticalSectionRawMutex, Command, COMMAND_QUEUE> = Channel::new();
@@ -69,8 +68,7 @@ pub async fn mqtt_publish(topic: &str, payload: &[u8], qos: QualityOfService, re
payload: truncate_payload(payload), payload: truncate_payload(payload),
qos, qos,
retain, retain,
})) })).await;
.await;
} }
pub async fn mqtt_subscribe(topic: &str) { pub async fn mqtt_subscribe(topic: &str) {
@@ -83,73 +81,18 @@ pub fn mqtt_events(
} }
// Helper functions for memory-safe truncation // Helper functions for memory-safe truncation
fn truncate_str<const N: usize>(s: &str) -> HString<N> { fn truncate_str<const N: usize>(s: &str) -> String<N> {
let mut h = HString::new(); let mut h = String::new();
let _ = h.push_str(&s[..s.len().min(N)]); let _ = h.push_str(&s[..s.len().min(N)]);
h h
} }
fn truncate_payload(data: &[u8]) -> HVec<u8, PAYLOAD_MAX> { fn truncate_payload(data: &[u8]) -> Vec<u8, PAYLOAD_MAX> {
let mut v = HVec::new(); let mut v = Vec::new();
let _ = v.extend_from_slice(&data[..data.len().min(PAYLOAD_MAX)]); let _ = v.extend_from_slice(&data[..data.len().min(PAYLOAD_MAX)]);
v v
} }
// MQTT configuration and client setup
fn build_client_config() -> ClientConfig<'static, 8, CountingRng> {
let mut cfg = ClientConfig::new(MqttVersion::MQTTv5, CountingRng(0));
cfg.keep_alive = KEEPALIVE_SECS as u16;
cfg.add_client_id("esp32-client");
cfg
}
fn build_client<'a, 'net>(
socket: TcpSocket<'net>,
mqtt_tx: &'a mut [u8],
mqtt_rx: &'a mut [u8],
) -> Client<'a, 'net> {
let mqtt_tx_len = mqtt_tx.len();
let mqtt_rx_len = mqtt_rx.len();
MqttClient::new(socket, mqtt_tx, mqtt_tx_len, mqtt_rx, mqtt_rx_len, build_client_config())
}
// Connection lifecycle and main session loop
async fn connect_tcp<'net>(socket: &mut TcpSocket<'net>) -> Result<(), ()> {
match socket.connect(mqtt_broker_endpoint()).await {
Ok(_) => {
info!("Connected TCP to MQTT broker");
Ok(())
}
Err(e) => {
info!("TCP connect failed: {:?}", e);
Err(())
}
}
}
async fn connect_mqtt(client: &mut Client<'_, '_>) -> Result<(), ReasonCode> {
client.connect_to_broker().await
}
async fn run_loop(client: &mut Client<'_, '_>) -> Result<(), ReasonCode> {
let default_topic = "esp32/topic";
match client.subscribe_to_topic(default_topic).await {
Ok(_) => info!("Subscribed to '{}'", default_topic),
Err(e) => info!("Default subscribe failed: {:?}", e),
};
loop {
let net_or_ping = select(client.receive_message(), Timer::after(PING_PERIOD));
match select(CMD_CHAN.receive(), net_or_ping).await {
Either::First(cmd) => handle_command(client, cmd).await?,
Either::Second(Either::First(result)) => handle_incoming(result).await?,
Either::Second(Either::Second(_)) => client.send_ping().await?,
}
}
}
async fn handle_command(client: &mut Client<'_, '_>, cmd: Command) -> Result<(), ReasonCode> { async fn handle_command(client: &mut Client<'_, '_>, cmd: Command) -> Result<(), ReasonCode> {
match cmd { match cmd {
Command::Publish(msg) => { Command::Publish(msg) => {
@@ -171,8 +114,7 @@ async fn handle_incoming(result: Result<(&str, &[u8]), ReasonCode>) -> Result<()
.send(IncomingMsg { .send(IncomingMsg {
topic: truncate_str::<TOPIC_MAX>(topic), topic: truncate_str::<TOPIC_MAX>(topic),
payload: truncate_payload(payload), payload: truncate_payload(payload),
}) }).await;
.await;
Ok(()) Ok(())
} }
@@ -185,12 +127,21 @@ async fn run_one_session(
mqtt_rx: &mut [u8], mqtt_rx: &mut [u8],
) -> Result<(), ()> { ) -> Result<(), ()> {
let mut socket = TcpSocket::new(stack, tcp_rx, tcp_tx); let mut socket = TcpSocket::new(stack, tcp_rx, tcp_tx);
if connect_tcp(&mut socket).await.is_err() { match socket.connect(mqtt_broker_endpoint()).await {
Ok(_) => info!("Connected TCP to MQTT broker"),
Err(e) => {
info!("TCP connect failed: {:#?}", e);
return Err(()); return Err(());
} }
}
let mut client = build_client(socket, mqtt_tx, mqtt_rx); // MQTT configuration and client setup
match connect_mqtt(&mut client).await { let mut cfg: ClientConfig<8, CountingRng> = ClientConfig::new(MqttVersion::MQTTv5, CountingRng(0));
cfg.keep_alive = KEEPALIVE_SECS as u16;
cfg.add_client_id("esp32-client");
let mut client = MqttClient::new(socket, mqtt_tx, mqtt_tx.len(), mqtt_rx, mqtt_rx.len(), cfg);
match client.connect_to_broker().await {
Ok(_) => info!("MQTT CONNACK received"), Ok(_) => info!("MQTT CONNACK received"),
Err(reason) => { Err(reason) => {
info!("MQTT connect failed: {:?}", reason); info!("MQTT connect failed: {:?}", reason);
@@ -198,7 +149,16 @@ async fn run_one_session(
} }
} }
run_loop(&mut client).await.map_err(|_| ()) // Operational loop
loop {
let net_or_ping = select(client.receive_message(), Timer::after(PING_PERIOD));
match select(CMD_CHAN.receive(), net_or_ping).await {
Either::First(cmd) => handle_command(&mut client, cmd).await.map_err(|_| ())?,
Either::Second(Either::First(result)) => handle_incoming(result).await.map_err(|_| ())?,
Either::Second(Either::Second(_)) => client.send_ping().await.map_err(|_| ())?,
}
}
} }
// Main MQTT embassy task // Main MQTT embassy task
@@ -218,13 +178,9 @@ pub async fn mqtt_task(stack: Stack<'static>) {
&mut tcp_tx[..], &mut tcp_tx[..],
&mut mqtt_tx[..], &mut mqtt_tx[..],
&mut mqtt_rx[..], &mut mqtt_rx[..],
) ).await;
.await;
info!( info!("Reconnecting in {}s after session end/failure", RECONNECT_DELAY_SECS);
"Reconnecting in {}s after session end/failure",
RECONNECT_DELAY_SECS
);
Timer::after(Duration::from_secs(RECONNECT_DELAY_SECS)).await; Timer::after(Duration::from_secs(RECONNECT_DELAY_SECS)).await;
} }
} }