tests in the steel decimal crate with serious issue fixed

This commit is contained in:
filipriec
2025-07-07 19:24:08 +02:00
parent 3443839ba4
commit b7c8f6b1a2
8 changed files with 1978 additions and 7 deletions

View File

@@ -0,0 +1,324 @@
// tests/boundary_tests.rs
use rstest::*;
use steel_decimal::*;
use rust_decimal::Decimal;
use std::str::FromStr;
// Test extreme decimal values
#[rstest]
#[case("79228162514264337593543950335")] // Max decimal value
#[case("-79228162514264337593543950335")] // Min decimal value
#[case("0.0000000000000000000000000001")] // Smallest positive decimal (28 decimal places)
#[case("-0.0000000000000000000000000001")] // Smallest negative decimal
#[case("999999999999999999999999999.9999")] // Near maximum with precision
fn test_extreme_decimal_values(#[case] extreme_value: &str) {
// These should not panic, but may return errors for unsupported ranges
let add_result = decimal_add(extreme_value.to_string(), "1".to_string());
let sub_result = decimal_sub(extreme_value.to_string(), "1".to_string());
let abs_result = decimal_abs(extreme_value.to_string());
let conversion_result = to_decimal(extreme_value.to_string());
// At minimum, conversion should work for valid decimals
if let Ok(_) = Decimal::from_str(extreme_value) {
assert!(conversion_result.is_ok(), "Valid decimal should convert: {}", extreme_value);
}
}
// Test maximum precision scenarios
#[rstest]
#[case(0)]
#[case(28)] // Maximum precision
fn test_precision_boundaries(#[case] precision: u32) {
let test_value = "123.456789012345678901234567890123456789";
if precision <= 28 {
let result = decimal_format(test_value.to_string(), precision);
assert!(result.is_ok(), "Precision {} should be valid", precision);
if let Ok(formatted) = result {
if precision == 0 {
assert!(!formatted.contains('.'), "Precision 0 should not have decimal point");
} else {
let decimal_places = formatted.split('.').nth(1).map(|s| s.len()).unwrap_or(0);
assert!(decimal_places <= precision as usize,
"Result should have at most {} decimal places, got {}",
precision, decimal_places);
}
}
}
}
// Test precision setting boundaries
#[rstest]
#[case(29)] // One over maximum
#[case(100)] // Way over maximum
#[case(u32::MAX)] // Maximum u32
fn test_invalid_precision_values(#[case] invalid_precision: u32) {
let result = set_precision(invalid_precision);
assert!(result.contains("Error"), "Should reject precision {}", invalid_precision);
// Verify precision wasn't actually set
let current = get_precision();
assert_ne!(current, invalid_precision.to_string());
}
// Test very long input strings
#[rstest]
fn test_very_long_inputs() {
// Create very long but valid decimal string
let long_integer = "1".repeat(1000);
let long_decimal = format!("{}.{}", "1".repeat(500), "2".repeat(28)); // Respect max precision
let very_long_decimal = format!("{}.{}", "9".repeat(2000), "1".repeat(28));
// These might fail due to decimal limits, but shouldn't panic
let _ = to_decimal(long_integer);
let _ = to_decimal(long_decimal);
let _ = to_decimal(very_long_decimal);
// Operations on long strings
let _ = decimal_add("1".repeat(100), "2".repeat(100));
let _ = decimal_mul("1".repeat(50), "3".repeat(50));
}
// Test scientific notation boundaries
#[rstest]
#[case("1e308")] // Near f64 max
#[case("1e-324")] // Near f64 min
#[case("1e1000")] // Way beyond f64
#[case("1e-1000")] // Way beyond f64
#[case("1.5e100")]
#[case("9.999e99")]
#[case("1.23456789e-50")]
fn test_extreme_scientific_notation(#[case] sci_notation: &str) {
let result = to_decimal(sci_notation.to_string());
// Should either succeed or fail gracefully
match result {
Ok(converted) => {
// If successful, should be a valid decimal
assert!(Decimal::from_str(&converted).is_ok(),
"Converted result should be valid decimal: {}", converted);
}
Err(_) => {
// Failure is acceptable for extreme values
}
}
}
// Test edge cases in arithmetic operations
#[rstest]
fn test_arithmetic_edge_cases() {
let max_decimal = "79228162514264337593543950335";
let min_decimal = "-79228162514264337593543950335";
let tiny_decimal = "0.0000000000000000000000000001";
// Addition near overflow
let _result = decimal_add(max_decimal.to_string(), "1".to_string());
// May overflow, but shouldn't panic
// Subtraction near underflow
let _result = decimal_sub(min_decimal.to_string(), "1".to_string());
// May underflow, but shouldn't panic
// Multiplication that could overflow
let _result = decimal_mul(max_decimal.to_string(), "2".to_string());
// May overflow, but shouldn't panic
// Division by very small number
let _result = decimal_div("1".to_string(), tiny_decimal.to_string());
// May be very large, but shouldn't panic
// All operations should complete without panicking
}
// Test malformed but potentially parseable inputs
#[rstest]
#[case("1.2.3")] // Multiple decimal points
#[case("1..2")] // Double decimal point
#[case(".123")] // Leading decimal point
#[case("123.")] // Trailing decimal point
#[case("1.23e")] // Incomplete scientific notation
#[case("1.23e+")] // Incomplete positive exponent
#[case("1.23e-")] // Incomplete negative exponent
#[case("e5")] // Missing mantissa
#[case("1e1e1")] // Multiple exponents
#[case("++1")] // Multiple signs
#[case("--1")] // Multiple negative signs
#[case("1.23.45e6")] // Decimal in mantissa and base
fn test_malformed_decimal_inputs(#[case] malformed: &str) {
// These should all fail gracefully, not panic
let result = to_decimal(malformed.to_string());
assert!(result.is_err(), "Malformed input should be rejected: {}", malformed);
// Test in arithmetic operations too
let _ = decimal_add(malformed.to_string(), "1".to_string());
let _ = decimal_sub("1".to_string(), malformed.to_string());
let _ = decimal_mul(malformed.to_string(), "2".to_string());
let _ = decimal_abs(malformed.to_string());
}
// Test edge cases in comparison operations
#[rstest]
fn test_comparison_edge_cases() {
// Test comparisons at boundaries
let results = [
decimal_eq("0".to_string(), "-0".to_string()),
decimal_eq("0.0".to_string(), "0.00".to_string()),
decimal_gt("0.0000000000000000000000000001".to_string(), "0".to_string()),
decimal_lt("-0.0000000000000000000000000001".to_string(), "0".to_string()),
];
for result in results {
assert!(result.is_ok(), "Comparison should not fail");
}
// Test with extreme values
let max_val = "79228162514264337593543950335";
let min_val = "-79228162514264337593543950335";
assert!(decimal_gt(max_val.to_string(), min_val.to_string()).unwrap_or(false));
assert!(decimal_lt(min_val.to_string(), max_val.to_string()).unwrap_or(false));
}
// Test trigonometric functions at boundaries
#[rstest]
#[case("0")] // sin(0) = 0, cos(0) = 1
#[case("1.5707963267948966")] // π/2
#[case("3.1415926535897932")] // π
#[case("6.2831853071795865")] // 2π
#[case("100")] // Large angle
#[case("-100")] // Large negative angle
fn test_trig_function_boundaries(#[case] angle: &str) {
let sin_result = decimal_sin(angle.to_string());
let cos_result = decimal_cos(angle.to_string());
let tan_result = decimal_tan(angle.to_string());
// These should all complete without panicking
// Results may be imprecise for large angles, but should be finite
if let Ok(sin_val) = sin_result {
let sin_decimal = Decimal::from_str(&sin_val).unwrap();
assert!(sin_decimal.abs() <= Decimal::from(2), "Sin should be bounded: {}", sin_val);
}
if let Ok(cos_val) = cos_result {
let cos_decimal = Decimal::from_str(&cos_val).unwrap();
assert!(cos_decimal.abs() <= Decimal::from(2), "Cos should be bounded: {}", cos_val);
}
}
// Test logarithmic functions at boundaries
#[rstest]
#[case("1")] // ln(1) = 0
#[case("2.718281828459045")] // ln(e) = 1
#[case("0.0000000000000000000000000001")] // Very small positive
#[case("79228162514264337593543950335")] // Very large
fn test_log_function_boundaries(#[case] value: &str) {
let ln_result = decimal_ln(value.to_string());
let log10_result = decimal_log10(value.to_string());
// Should not panic, may return errors for invalid domains
if Decimal::from_str(value).unwrap() > Decimal::ZERO {
// Positive values should potentially work
match ln_result {
Ok(_) => {}, // Success is fine
Err(_) => {}, // Failure is also acceptable for extreme values
}
} else {
// Zero or negative should fail
assert!(ln_result.is_err(), "ln of non-positive should fail");
}
}
// Test square root at boundaries
#[rstest]
#[case("0")] // sqrt(0) = 0
#[case("1")] // sqrt(1) = 1
#[case("4")] // sqrt(4) = 2
#[case("0.0000000000000000000000000001")] // Very small
#[case("79228162514264337593543950335")] // Very large
fn test_sqrt_boundaries(#[case] value: &str) {
let result = decimal_sqrt(value.to_string());
if Decimal::from_str(value).unwrap() >= Decimal::ZERO {
match result {
Ok(sqrt_val) => {
let sqrt_decimal = Decimal::from_str(&sqrt_val).unwrap();
assert!(sqrt_decimal >= Decimal::ZERO, "Square root should be non-negative");
}
Err(_) => {
// May fail for very large values
}
}
} else {
assert!(result.is_err(), "Square root of negative should fail");
}
}
// Test power function boundaries
#[rstest]
#[case("2", "0")] // 2^0 = 1
#[case("2", "1")] // 2^1 = 2
#[case("2", "10")] // 2^10 = 1024
#[case("0", "5")] // 0^5 = 0
#[case("1", "1000")] // 1^1000 = 1
#[case("2", "100")] // Large exponent
#[case("10", "20")] // Another large case
fn test_pow_boundaries(#[case] base: &str, #[case] exponent: &str) {
let result = decimal_pow(base.to_string(), exponent.to_string());
// Should not panic, may overflow for large exponents
match &result {
Ok(_) => {}, // Success is fine
Err(_) => {}, // Overflow/underflow acceptable for extreme cases
}
// Special cases that should always work
if base == "1" {
// 1^anything = 1
if let Ok(ref val) = result {
assert_eq!(val, "1");
}
}
if exponent == "0" && base != "0" {
// anything^0 = 1 (except 0^0 which is undefined)
if let Ok(ref val) = result {
assert_eq!(val, "1");
}
}
}
// Test financial functions with boundary values
#[rstest]
fn test_financial_boundaries() {
// Test percentage calculations
let percentage_tests = [
("0", "50"), // 0% of 50
("100", "0"), // 100% of 0
("100", "100"), // 100% of 100
("1000000", "0.001"), // Large amount, tiny percentage
("0.001", "1000000"), // Tiny amount, huge percentage
];
for (amount, percentage) in percentage_tests {
let result = decimal_percentage(amount.to_string(), percentage.to_string());
assert!(result.is_ok(), "Percentage calculation should work: {}% of {}", percentage, amount);
}
// Test compound interest edge cases
let compound_tests = [
("1000", "0", "10"), // 0% interest
("1000", "0.05", "0"), // 0 time periods
("0", "0.05", "10"), // 0 principal
("1", "2", "10"), // 200% interest (extreme but valid)
];
for (principal, rate, time) in compound_tests {
let result = decimal_compound(principal.to_string(), rate.to_string(), time.to_string());
// Some extreme cases may overflow, but shouldn't panic
match result {
Ok(_) => {},
Err(_) => {}, // Acceptable for extreme cases
}
}
}

View File

@@ -0,0 +1,478 @@
// tests/concurrency_tests.rs
use steel_decimal::*;
use std::sync::{Arc, Barrier, Mutex};
use std::thread;
use std::time::Duration;
use std::collections::HashMap;
// Test precision isolation between threads
#[test]
fn test_precision_thread_isolation() {
let num_threads = 10;
let barrier = Arc::new(Barrier::new(num_threads));
let results = Arc::new(Mutex::new(Vec::new()));
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
let results = results.clone();
thread::spawn(move || {
// Each thread sets different precision
let precision = thread_id as u32 % 5; // 0-4
set_precision(precision);
// Wait for all threads to set their precision
barrier.wait();
// Perform calculation
let result = decimal_add("1.123456789".to_string(), "2.987654321".to_string()).unwrap();
// Verify precision is maintained in this thread
let current_precision = get_precision();
results.lock().unwrap().push((thread_id, precision, result, current_precision));
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let results = results.lock().unwrap();
// Verify each thread maintained its own precision
for (thread_id, set_precision, result, current_precision) in results.iter() {
assert_eq!(current_precision, &set_precision.to_string(),
"Thread {} precision not isolated", thread_id);
// Verify result respects the precision
if *set_precision > 0 {
let decimal_places = result.split('.').nth(1).map(|s| s.len()).unwrap_or(0);
assert!(decimal_places <= *set_precision as usize,
"Thread {} result {} has more than {} decimal places",
thread_id, result, set_precision);
}
}
}
// Test concurrent arithmetic operations
#[test]
fn test_concurrent_arithmetic_operations() {
let num_threads = 20;
let operations_per_thread = 100;
let barrier = Arc::new(Barrier::new(num_threads));
let errors = Arc::new(Mutex::new(Vec::new()));
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
let errors = errors.clone();
thread::spawn(move || {
barrier.wait();
for i in 0..operations_per_thread {
let a = format!("{}.{}", thread_id, i);
let b = format!("{}.{}", i, thread_id);
// Test various operations don't interfere
let add_result = decimal_add(a.clone(), b.clone());
let mul_result = decimal_mul(a.clone(), b.clone());
let sub_result = decimal_sub(a.clone(), b.clone());
if add_result.is_err() || mul_result.is_err() || sub_result.is_err() {
errors.lock().unwrap().push(format!(
"Thread {}, iteration {}: arithmetic error",
thread_id, i
));
}
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let errors = errors.lock().unwrap();
assert!(errors.is_empty(), "Concurrent arithmetic errors: {:?}", *errors);
}
// Test Steel VM registration under concurrent load
#[test]
fn test_concurrent_vm_registration() {
use steel::steel_vm::engine::Engine;
let num_threads = 5;
let barrier = Arc::new(Barrier::new(num_threads));
let errors = Arc::new(Mutex::new(Vec::new()));
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
let errors = errors.clone();
thread::spawn(move || {
barrier.wait();
// Each thread creates its own VM and registers functions
let mut vm = Engine::new();
FunctionRegistry::register_all(&mut vm);
// Test execution
let script = r#"(decimal-add "1.5" "2.3")"#;
let result = vm.compile_and_run_raw_program(script.to_string());
match result {
Ok(vals) => {
if vals.len() != 1 {
errors.lock().unwrap().push(format!(
"Thread {}: Wrong number of results", thread_id
));
}
}
Err(e) => {
errors.lock().unwrap().push(format!(
"Thread {}: VM execution error: {}", thread_id, e
));
}
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let errors = errors.lock().unwrap();
assert!(errors.is_empty(), "Concurrent VM errors: {:?}", *errors);
}
// Test variable access concurrency
#[test]
fn test_concurrent_variable_access() {
use steel::steel_vm::engine::Engine;
let num_threads = 8;
let barrier = Arc::new(Barrier::new(num_threads));
let errors = Arc::new(Mutex::new(Vec::new()));
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
let errors = errors.clone();
thread::spawn(move || {
// Each thread has its own variable set
let mut variables = HashMap::new();
variables.insert(format!("var_{}", thread_id), format!("{}.0", thread_id * 10));
variables.insert("shared".to_string(), "42.0".to_string());
let mut vm = Engine::new();
FunctionRegistry::register_variables(&mut vm, variables);
barrier.wait();
// Test variable access
let get_script = format!(r#"(get-var "var_{}")"#, thread_id);
let has_script = format!(r#"(has-var? "var_{}")"#, thread_id);
let shared_script = r#"(get-var "shared")"#.to_string();
for script in [get_script, shared_script] {
match vm.compile_and_run_raw_program(script) {
Ok(_) => {}
Err(e) => {
errors.lock().unwrap().push(format!(
"Thread {}: Variable access error: {}", thread_id, e
));
}
}
}
match vm.compile_and_run_raw_program(has_script) {
Ok(_) => {}
Err(e) => {
errors.lock().unwrap().push(format!(
"Thread {}: Variable check error: {}", thread_id, e
));
}
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let errors = errors.lock().unwrap();
assert!(errors.is_empty(), "Concurrent variable access errors: {:?}", *errors);
}
// Test precision state under rapid changes
#[test]
fn test_rapid_precision_changes() {
let num_threads = 4;
let changes_per_thread = 1000;
let barrier = Arc::new(Barrier::new(num_threads));
let inconsistencies = Arc::new(Mutex::new(0));
let handles: Vec<_> = (0..num_threads)
.map(|_thread_id| {
let barrier = barrier.clone();
let inconsistencies = inconsistencies.clone();
thread::spawn(move || {
barrier.wait();
for i in 0..changes_per_thread {
let precision = (i % 5) as u32; // Cycle through 0-4
set_precision(precision);
// Immediately check precision
let current = get_precision();
if current != precision.to_string() {
*inconsistencies.lock().unwrap() += 1;
}
// Perform calculation and verify
let result = decimal_add("1.123456".to_string(), "2.654321".to_string()).unwrap();
if precision > 0 {
let decimal_places = result.split('.').nth(1).map(|s| s.len()).unwrap_or(0);
if decimal_places > precision as usize {
*inconsistencies.lock().unwrap() += 1;
}
}
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let inconsistencies = *inconsistencies.lock().unwrap();
assert_eq!(inconsistencies, 0, "Found {} precision inconsistencies", inconsistencies);
}
// Test parser thread safety
#[test]
fn test_parser_thread_safety() {
let num_threads = 10;
let transformations_per_thread = 100;
let barrier = Arc::new(Barrier::new(num_threads));
let errors = Arc::new(Mutex::new(Vec::new()));
let test_scripts = vec![
"(+ 1.5 2.3)",
"(* $x $y)",
"(sqrt (+ (* $a $a) (* $b $b)))",
"(/ (- $max $min) 2)",
"(abs (- $value $target))",
];
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
let errors = errors.clone();
let scripts = test_scripts.clone();
thread::spawn(move || {
let parser = ScriptParser::new();
barrier.wait();
for i in 0..transformations_per_thread {
let script = &scripts[i % scripts.len()];
let transformed = parser.transform(script);
let _dependencies = parser.extract_dependencies(script);
// Basic validation
let open_count = transformed.chars().filter(|c| *c == '(').count();
let close_count = transformed.chars().filter(|c| *c == ')').count();
if open_count != close_count {
errors.lock().unwrap().push(format!(
"Thread {}, iteration {}: Unbalanced parentheses in {}",
thread_id, i, transformed
));
}
if !transformed.contains("decimal-") && script.contains('+') {
errors.lock().unwrap().push(format!(
"Thread {}, iteration {}: Transformation failed for {}",
thread_id, i, script
));
}
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let errors = errors.lock().unwrap();
assert!(errors.is_empty(), "Parser thread safety errors: {:?}", *errors);
}
// Test memory safety under concurrent load
#[test]
fn test_memory_safety_concurrent_load() {
let num_threads = 8;
let iterations = 500;
let barrier = Arc::new(Barrier::new(num_threads));
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
thread::spawn(move || {
barrier.wait();
// Create many SteelDecimal instances
for i in 0..iterations {
let mut steel_decimal = SteelDecimal::new();
// Add variables
steel_decimal.add_variable(format!("var_{}", i), format!("{}.{}", thread_id, i));
// Transform scripts
let script = format!("(+ {} {})", i, thread_id);
let _ = steel_decimal.transform(&script);
// Extract dependencies
let _ = steel_decimal.extract_dependencies(&script);
// Small delay to increase chance of race conditions
if i % 100 == 0 {
thread::sleep(Duration::from_micros(1));
}
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
// If we get here without panicking, memory safety is maintained
}
// Test precision cleanup after thread termination
#[test]
fn test_precision_cleanup_after_thread_death() {
// Create thread that sets precision and dies
let handle = thread::spawn(|| {
set_precision(3);
decimal_add("1.123456".to_string(), "2.654321".to_string()).unwrap()
});
let result = handle.join().unwrap();
// Verify the result had the precision applied
let decimal_places = result.split('.').nth(1).map(|s| s.len()).unwrap_or(0);
assert!(decimal_places <= 3);
// In main thread, precision should be unaffected
let main_precision = get_precision();
// Should be "full" (default) since we haven't set it in main thread
assert_eq!(main_precision, "full");
// Create another thread - should start fresh
let handle2 = thread::spawn(|| {
let precision = get_precision();
(precision, decimal_add("1.123456".to_string(), "2.654321".to_string()).unwrap())
});
let (new_precision, new_result) = handle2.join().unwrap();
assert_eq!(new_precision, "full");
// This result should use full precision
let new_decimal_places = new_result.split('.').nth(1).map(|s| s.len()).unwrap_or(0);
assert!(new_decimal_places > 3); // Should be more than the previous thread's precision
}
// Stress test with mixed operations
#[test]
fn test_concurrent_stress_mixed_operations() {
let num_threads = 6;
let operations_per_thread = 200;
let barrier = Arc::new(Barrier::new(num_threads));
let total_errors = Arc::new(Mutex::new(0));
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
let total_errors = total_errors.clone();
thread::spawn(move || {
let mut errors = 0;
barrier.wait();
for i in 0..operations_per_thread {
// Mix of precision settings
if i % 50 == 0 {
set_precision((thread_id as u32) % 5);
}
// Mix of operations
match i % 6 {
0 => {
if decimal_add(format!("{}.{}", thread_id, i), "1.0".to_string()).is_err() {
errors += 1;
}
}
1 => {
if decimal_mul(format!("{}", i), format!("{}.5", thread_id)).is_err() {
errors += 1;
}
}
2 => {
if decimal_sqrt(format!("{}", i + 1)).is_err() && i > 0 {
errors += 1;
}
}
3 => {
if decimal_abs(format!("-{}.{}", thread_id, i)).is_err() {
errors += 1;
}
}
4 => {
if decimal_gt(format!("{}", i), format!("{}", thread_id)).is_err() {
errors += 1;
}
}
5 => {
if to_decimal(format!("{}.{}e1", thread_id, i)).is_err() {
errors += 1;
}
}
_ => unreachable!()
}
}
*total_errors.lock().unwrap() += errors;
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let total_errors = *total_errors.lock().unwrap();
// Allow some errors for edge cases (like sqrt of 0), but not too many
assert!(total_errors < num_threads * operations_per_thread / 10,
"Too many errors in stress test: {}", total_errors);
}

View File

@@ -0,0 +1,338 @@
// tests/property_tests.rs
use proptest::prelude::*;
use steel_decimal::*;
use rust_decimal::Decimal;
use std::str::FromStr;
// Strategy for generating valid decimal strings
fn decimal_string() -> impl Strategy<Value = String> {
prop_oneof![
// Small integers
(-1000i32..1000i32).prop_map(|i| i.to_string()),
// Small decimals with 1-6 decimal places
(
-1000i32..1000i32,
1..1000000u32
).prop_map(|(whole, frac)| {
let frac_str = format!("{:06}", frac);
format!("{}.{}", whole, frac_str.trim_end_matches('0'))
}),
// Scientific notation
(
-100i32..100i32,
-10i32..10i32
).prop_map(|(mantissa, exp)| format!("{}e{}", mantissa, exp)),
// Very small numbers
Just("0.000000000000000001".to_string()),
Just("0.000000000000000000000000001".to_string()),
// Numbers at decimal precision limits
Just("99999999999999999999999999.9999".to_string()),
]
}
// Strategy for generating valid precision values
fn precision_value() -> impl Strategy<Value = u32> {
0..=28u32
}
// Property: Basic arithmetic operations preserve decimal precision semantics
proptest! {
#[test]
fn test_arithmetic_commutativity(
a in decimal_string(),
b in decimal_string()
) {
// Addition should be commutative: a + b = b + a
let result1 = decimal_add(a.clone(), b.clone());
let result2 = decimal_add(b, a);
match (result1, result2) {
(Ok(r1), Ok(r2)) => {
// Parse both results and compare as decimals
let d1 = Decimal::from_str(&r1).unwrap();
let d2 = Decimal::from_str(&r2).unwrap();
prop_assert_eq!(d1, d2);
}
(Err(_), Err(_)) => {
// Both should fail in the same way for invalid inputs
}
_ => prop_assert!(false, "Inconsistent error handling")
}
}
#[test]
fn test_multiplication_commutativity(
a in decimal_string(),
b in decimal_string()
) {
let result1 = decimal_mul(a.clone(), b.clone());
let result2 = decimal_mul(b, a);
match (result1, result2) {
(Ok(r1), Ok(r2)) => {
let d1 = Decimal::from_str(&r1).unwrap();
let d2 = Decimal::from_str(&r2).unwrap();
prop_assert_eq!(d1, d2);
}
(Err(_), Err(_)) => {}
_ => prop_assert!(false, "Inconsistent error handling")
}
}
#[test]
fn test_addition_associativity(
a in decimal_string(),
b in decimal_string(),
c in decimal_string()
) {
// (a + b) + c = a + (b + c)
let ab = decimal_add(a.clone(), b.clone());
let bc = decimal_add(b, c.clone());
if let (Ok(ab_result), Ok(bc_result)) = (ab, bc) {
let left = decimal_add(ab_result, c);
let right = decimal_add(a, bc_result);
if let (Ok(left_final), Ok(right_final)) = (left, right) {
let d1 = Decimal::from_str(&left_final).unwrap();
let d2 = Decimal::from_str(&right_final).unwrap();
prop_assert_eq!(d1, d2);
}
}
}
#[test]
fn test_multiplication_by_zero(a in decimal_string()) {
let result = decimal_mul(a, "0".to_string());
if let Ok(r) = result {
let d = Decimal::from_str(&r).unwrap();
prop_assert!(d.is_zero());
}
}
#[test]
fn test_addition_with_zero_identity(a in decimal_string()) {
let result = decimal_add(a.clone(), "0".to_string());
match result {
Ok(r) => {
// Converting through decimal and back should give equivalent result
if let Ok(original) = Decimal::from_str(&a) {
let result_decimal = Decimal::from_str(&r).unwrap();
prop_assert_eq!(original, result_decimal);
}
}
Err(_) => {
// If a is invalid, this is expected
prop_assert!(Decimal::from_str(&a).is_err());
}
}
}
#[test]
fn test_division_then_multiplication_inverse(
a in decimal_string(),
b in decimal_string().prop_filter("b != 0", |b| b != "0")
) {
// (a / b) * b should approximately equal a
let div_result = decimal_div(a.clone(), b.clone());
if let Ok(quotient) = div_result {
let mul_result = decimal_mul(quotient, b);
if let Ok(final_result) = mul_result {
if let (Ok(original), Ok(final_decimal)) =
(Decimal::from_str(&a), Decimal::from_str(&final_result)) {
// Allow for small rounding differences
let diff = (original - final_decimal).abs();
let tolerance = Decimal::from_str("0.000000000001").unwrap();
prop_assert!(diff <= tolerance,
"Division-multiplication not inverse: {} vs {}",
original, final_decimal);
}
}
}
}
#[test]
fn test_absolute_value_properties(a in decimal_string()) {
let abs_result = decimal_abs(a.clone());
if let Ok(abs_val) = abs_result {
let abs_decimal = Decimal::from_str(&abs_val).unwrap();
// abs(x) >= 0
prop_assert!(abs_decimal >= Decimal::ZERO);
// abs(abs(x)) = abs(x)
let double_abs = decimal_abs(abs_val);
if let Ok(double_abs_val) = double_abs {
let double_abs_decimal = Decimal::from_str(&double_abs_val).unwrap();
prop_assert_eq!(abs_decimal, double_abs_decimal);
}
}
}
#[test]
fn test_comparison_transitivity(
a in decimal_string(),
b in decimal_string(),
c in decimal_string()
) {
// If a > b and b > c, then a > c
let ab = decimal_gt(a.clone(), b.clone());
let bc = decimal_gt(b, c.clone());
let ac = decimal_gt(a, c);
if let (Ok(true), Ok(true), Ok(ac_result)) = (ab, bc, ac) {
prop_assert!(ac_result, "Transitivity violated for > comparison");
}
}
#[test]
fn test_min_max_properties(
a in decimal_string(),
b in decimal_string()
) {
let min_result = decimal_min(a.clone(), b.clone());
let max_result = decimal_max(a.clone(), b.clone());
if let (Ok(min_val), Ok(max_val)) = (min_result, max_result) {
let min_decimal = Decimal::from_str(&min_val).unwrap();
let max_decimal = Decimal::from_str(&max_val).unwrap();
// min(a,b) <= max(a,b)
prop_assert!(min_decimal <= max_decimal);
// min(a,b) should equal either a or b
if let (Ok(a_decimal), Ok(b_decimal)) =
(Decimal::from_str(&a), Decimal::from_str(&b)) {
prop_assert!(min_decimal == a_decimal || min_decimal == b_decimal);
prop_assert!(max_decimal == a_decimal || max_decimal == b_decimal);
}
}
}
#[test]
fn test_round_trip_conversion(a in decimal_string()) {
// to_decimal should be idempotent for valid decimals
let first_conversion = to_decimal(a.clone());
if let Ok(converted) = first_conversion {
let second_conversion = to_decimal(converted.clone());
prop_assert_eq!(Ok(converted), second_conversion);
}
}
#[test]
fn test_precision_formatting_consistency(
a in decimal_string(),
precision in precision_value()
) {
let formatted = decimal_format(a.clone(), precision);
if let Ok(result) = formatted {
// Formatting again with same precision should be idempotent
let reformatted = decimal_format(result.clone(), precision);
prop_assert_eq!(Ok(result.clone()), reformatted);
// Result should have at most 'precision' decimal places
if let Some(dot_pos) = result.find('.') {
let decimal_part = &result[dot_pos + 1..];
prop_assert!(decimal_part.len() <= precision as usize);
}
}
}
#[test]
fn test_sqrt_then_square_approximate_inverse(
a in decimal_string().prop_filter("positive", |s| {
Decimal::from_str(s).map(|d| d >= Decimal::ZERO).unwrap_or(false)
})
) {
let sqrt_result = decimal_sqrt(a.clone());
if let Ok(sqrt_val) = sqrt_result {
let square_result = decimal_mul(sqrt_val.clone(), sqrt_val);
if let Ok(square_val) = square_result {
if let (Ok(original), Ok(squared)) =
(Decimal::from_str(&a), Decimal::from_str(&square_val)) {
// Allow for rounding differences in sqrt
let diff = (original - squared).abs();
let tolerance = Decimal::from_str("0.0001").unwrap();
prop_assert!(diff <= tolerance,
"sqrt-square not approximate inverse: {} vs {}",
original, squared);
}
}
}
}
}
// Property tests for parser transformation
proptest! {
#[test]
fn test_parser_transformation_preserves_structure(
operations in prop::collection::vec(
prop_oneof!["+" , "-", "*", "/", "sqrt", "abs"],
1..5usize
)
) {
let parser = ScriptParser::new();
// Generate a simple expression
let expr = format!("({} 1 2)", operations[0]);
let transformed = parser.transform(&expr);
// Transformed should be balanced parentheses
let open_count = transformed.chars().filter(|c| *c == '(').count();
let close_count = transformed.chars().filter(|c| *c == ')').count();
prop_assert_eq!(open_count, close_count);
// Should contain decimal function
prop_assert!(transformed.contains("decimal-"));
}
#[test]
fn test_variable_extraction_correctness(
var_names in prop::collection::vec("[a-zA-Z][a-zA-Z0-9_]*", 1..10)
) {
let parser = ScriptParser::new();
// Create expression with variables
let expr = format!("(+ ${})", var_names.join(" $"));
let dependencies = parser.extract_dependencies(&expr);
// Should extract all variable names
for name in &var_names {
prop_assert!(dependencies.contains(name));
}
// Should not extract extra variables
prop_assert_eq!(dependencies.len(), var_names.len());
}
}
// Fuzzing-style tests for edge cases
proptest! {
#[test]
fn test_no_panics_on_random_input(
input in ".*"
) {
// These operations should never panic, only return errors
let _ = to_decimal(input.clone());
let _ = decimal_add(input.clone(), "1".to_string());
let _ = decimal_abs(input.clone());
let parser = ScriptParser::new();
let _ = parser.transform(&input);
let _ = parser.extract_dependencies(&input);
}
#[test]
fn test_scientific_notation_consistency(
mantissa in -1000f64..1000f64,
exponent in -10i32..10i32
) {
let sci_notation = format!("{}e{}", mantissa, exponent);
let conversion_result = to_decimal(sci_notation);
// If conversion succeeds, result should be a valid decimal
if let Ok(result) = conversion_result {
prop_assert!(Decimal::from_str(&result).is_ok());
}
}
}

View File

@@ -0,0 +1,424 @@
// tests/security_tests.rs
use rstest::*;
use steel_decimal::*;
use steel::steel_vm::engine::Engine;
use std::collections::HashMap;
// Test stack overflow protection with deeply nested expressions
#[rstest]
fn test_stack_overflow_protection() {
let parser = ScriptParser::new();
// Create extremely deep nesting (potential stack overflow)
let mut expr = "1".to_string();
for i in 0..10000 {
expr = format!("(+ {} {})", expr, i);
}
// Should not crash the process
let result = std::panic::catch_unwind(|| {
parser.transform(&expr)
});
// Either succeeds or panics gracefully, but shouldn't segfault
match result {
Ok(_) => {}, // Transformation succeeded
Err(_) => {}, // Panic caught, which is acceptable
}
}
// Test memory exhaustion protection
#[rstest]
fn test_memory_exhaustion_protection() {
let parser = ScriptParser::new();
// Create expression designed to consume lots of memory
let large_var_name = "x".repeat(1_000_000); // 1MB variable name
let expr = format!("(+ ${} 1)", large_var_name);
// Should not consume unlimited memory
let result = std::panic::catch_unwind(|| {
parser.transform(&expr)
});
// Should handle gracefully
assert!(result.is_ok());
}
// Test injection attacks through variable names
#[rstest]
#[case("'; DROP TABLE users; --")] // SQL injection style
#[case("$(rm -rf /)")] // Shell injection style
#[case("<script>alert('xss')</script>")] // XSS style
#[case("../../etc/passwd")] // Path traversal style
#[case("${system('rm -rf /')}")] // Template injection style
#[case("{{7*7}}")] // Template injection
#[case("__proto__")] // Prototype pollution
#[case("constructor")] // Constructor pollution
#[case("\\x00\\x01\\x02")] // Null bytes and control chars
fn test_variable_name_injection(#[case] malicious_var: &str) {
let parser = ScriptParser::new();
// Attempt injection through variable name
let expr = format!("(+ ${} 1)", malicious_var);
let transformed = parser.transform(&expr);
// Should transform without executing malicious code
assert!(transformed.contains("get-var"));
assert!(transformed.contains(malicious_var));
// Should extract as dependency without side effects
let deps = parser.extract_dependencies(&expr);
assert!(deps.contains(malicious_var));
}
// Test malicious Steel expressions
#[rstest]
#[case("(eval '(system \"rm -rf /\"))")] // Code execution attempt
#[case("(load \"../../etc/passwd\")")] // File access attempt
#[case("(require 'os) (os/execute \"malicious-command\")")] // Module injection
#[case("(define loop (lambda () (loop))) (loop)")] // Infinite recursion
#[case("(define mem-bomb (lambda () (cons 1 (mem-bomb)))) (mem-bomb)")] // Memory bomb
fn test_malicious_steel_expressions(#[case] malicious_expr: &str) {
let steel_decimal = SteelDecimal::new();
// Should not execute malicious Steel code during transformation
let transformed = steel_decimal.transform(malicious_expr);
// Transformation should complete without side effects
assert!(!transformed.is_empty());
// Should not contain the original malicious functions if transformed
if malicious_expr.contains("eval") || malicious_expr.contains("load") {
// These shouldn't be transformed into decimal operations
assert!(!transformed.contains("decimal-"));
}
}
// Test parser regex exploitation
#[rstest]
#[case("((((((((((a")] // Unbalanced parentheses
fn test_parser_regex_exploitation_simple(#[case] malicious_input: &str) {
let parser = ScriptParser::new();
// Should not hang or consume excessive CPU
let start = std::time::Instant::now();
let result = std::panic::catch_unwind(|| {
parser.transform(malicious_input)
});
let duration = start.elapsed();
// Should complete within reasonable time (not ReDoS)
assert!(duration.as_secs() < 5, "Parser took too long: {:?}", duration);
// Should not crash
assert!(result.is_ok());
}
#[rstest]
fn test_parser_regex_exploitation_large_inputs() {
let parser = ScriptParser::new();
// Test extremely long variable reference
let large_var = format!("${}", "a".repeat(100000));
let start = std::time::Instant::now();
let result = std::panic::catch_unwind(|| {
parser.transform(&large_var)
});
let duration = start.elapsed();
assert!(duration.as_secs() < 5, "Large variable parsing took too long: {:?}", duration);
assert!(result.is_ok());
// Test repeated operators
let repeated_ops = format!("({}{})", "+".repeat(100000), " 1 2)");
let start = std::time::Instant::now();
let result = std::panic::catch_unwind(|| {
parser.transform(&repeated_ops)
});
let duration = start.elapsed();
assert!(duration.as_secs() < 5, "Repeated operators parsing took too long: {:?}", duration);
assert!(result.is_ok());
// Test huge string literals
let huge_string = format!("\"{}\"", "a".repeat(1000000));
let start = std::time::Instant::now();
let result = std::panic::catch_unwind(|| {
parser.transform(&huge_string)
});
let duration = start.elapsed();
assert!(duration.as_secs() < 5, "Huge string parsing took too long: {:?}", duration);
assert!(result.is_ok());
}
// Test Steel VM security integration
#[rstest]
fn test_steel_vm_security_integration() {
let mut vm = Engine::new();
let steel_decimal = SteelDecimal::new();
steel_decimal.register_functions(&mut vm);
// Test that we can't escape decimal functions to execute arbitrary code
let malicious_scripts = vec![
r#"(eval "(system \"echo pwned\")")"#,
r#"(load "../../etc/passwd")"#,
r#"(define dangerous (lambda () (system "rm -rf /")))"#,
r#"(require 'steel/core)"#, // Try to access core modules
];
for script in malicious_scripts {
let result = vm.compile_and_run_raw_program(script.to_string());
// These should fail to compile or execute, not succeed
match result {
Ok(_) => {
// If it succeeds, verify it didn't do anything dangerous
// (We can't really test this without side effects, so we assume it's safe)
}
Err(_) => {
// Expected - should fail to execute dangerous code
}
}
}
}
// Test variable access security
#[rstest]
fn test_variable_access_security() {
let mut variables = HashMap::new();
variables.insert("safe_var".to_string(), "42".to_string());
variables.insert("password".to_string(), "secret123".to_string());
variables.insert("api_key".to_string(), "key_abc123".to_string());
let mut vm = Engine::new();
FunctionRegistry::register_variables(&mut vm, variables);
// Test that we can't enumerate all variables
let enumeration_attempts = vec![
r#"(map get-var (list "password" "api_key" "secret"))"#,
r#"(get-var "")"#, // Empty variable name
r#"(get-var nil)"#, // Nil variable name
];
for attempt in enumeration_attempts {
let result = vm.compile_and_run_raw_program(attempt.to_string());
// Should either fail or not reveal sensitive information
match result {
Ok(_) => {}, // If succeeds, assume it's safe
Err(_) => {}, // Expected failure
}
}
}
// Test format string attacks through decimal formatting
#[rstest]
#[case("%s%s%s%s")] // Format string attack
#[case("%n")] // Write to memory attempt
#[case("%x%x%x%x")] // Memory reading attempt
#[case("\\x41\\x41\\x41\\x41")] // Buffer overflow attempt
fn test_format_string_attacks(#[case] format_attack: &str) {
// Test in various contexts where user input might be formatted
let _ = to_decimal(format_attack.to_string());
let _ = decimal_add(format_attack.to_string(), "1".to_string());
let _ = decimal_format("123.456".to_string(), 2); // Shouldn't use user input as format
// Should not crash or leak memory
}
// Test buffer overflow attempts
#[rstest]
fn test_buffer_overflow_attempts() {
// Test with very long inputs that might cause buffer overflows in C libraries
let long_input = "A".repeat(100_000);
let long_number = "1".repeat(10_000) + "." + &"2".repeat(10_000);
// Should handle gracefully without buffer overflows
let _ = to_decimal(long_input);
let _ = to_decimal(long_number.clone());
let _ = decimal_add(long_number.clone(), "1".to_string());
let _ = decimal_sqrt(long_number);
// If we get here without crashing, buffer overflow protection works
}
// Test denial of service through resource exhaustion
#[rstest]
fn test_resource_exhaustion_protection() {
let steel_decimal = SteelDecimal::new();
// Test CPU exhaustion
let cpu_bomb = "(+ ".repeat(10000) + "1" + &")".repeat(10000);
let start = std::time::Instant::now();
let _ = steel_decimal.transform(&cpu_bomb);
let duration = start.elapsed();
// Should not take excessive time
assert!(duration.as_secs() < 10, "CPU exhaustion detected");
// Test memory exhaustion through many variables
let mut steel_decimal = SteelDecimal::new();
for i in 0..100_000 {
steel_decimal.add_variable(format!("var_{}", i), "1".to_string());
}
// Should handle many variables without exhausting memory
let expr = "(+ $var_0 $var_99999)";
let _ = steel_decimal.transform(expr);
}
// Test integer overflow/underflow in precision settings
#[rstest]
#[case(u32::MAX)]
#[case(u32::MAX - 1)]
fn test_integer_overflow_in_precision(#[case] overflow_value: u32) {
// Should handle overflow gracefully
let result = set_precision(overflow_value);
assert!(result.contains("Error") || result.contains("Maximum"));
// Should not set invalid precision
let current = get_precision();
assert_ne!(current, overflow_value.to_string());
}
// Test race conditions in precision settings (security through thread safety)
#[rstest]
fn test_precision_race_conditions() {
use std::sync::{Arc, Barrier};
use std::thread;
let num_threads = 10;
let barrier = Arc::new(Barrier::new(num_threads));
let success_count = Arc::new(std::sync::atomic::AtomicU32::new(0));
let handles: Vec<_> = (0..num_threads)
.map(|thread_id| {
let barrier = barrier.clone();
let success_count = success_count.clone();
thread::spawn(move || {
barrier.wait();
// Try to cause race condition
for i in 0..1000 {
let precision = (thread_id + i) % 5;
set_precision(precision as u32);
// Immediately use precision
let result = decimal_add("1.123456789".to_string(), "2.987654321".to_string());
if result.is_ok() {
success_count.fetch_add(1, std::sync::atomic::Ordering::Relaxed);
}
}
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
// Should have high success rate (race conditions would cause failures)
let successes = success_count.load(std::sync::atomic::Ordering::Relaxed);
assert!(successes > (num_threads * 900) as u32, "Too many race condition failures: {}", successes);
}
// Test SQL injection style attacks through numeric inputs
#[rstest]
#[case("1; DROP TABLE decimals; --")]
#[case("1' OR '1'='1")]
#[case("1 UNION SELECT * FROM passwords")]
#[case("1; exec('rm -rf /')")]
fn test_sql_injection_style_attacks(#[case] injection_attempt: &str) {
// These should be treated as invalid decimal formats
let result = to_decimal(injection_attempt.to_string());
assert!(result.is_err(), "SQL injection attempt should fail: {}", injection_attempt);
// Should also fail in arithmetic
let add_result = decimal_add(injection_attempt.to_string(), "1".to_string());
assert!(add_result.is_err(), "Arithmetic with injection should fail");
}
// Test path traversal through variable names
#[rstest]
#[case("../../../etc/passwd")]
#[case("..\\..\\..\\windows\\system32\\config\\sam")]
#[case("/etc/passwd")]
#[case("C:\\Windows\\System32\\config\\SAM")]
#[case("file:///etc/passwd")]
#[case("data:text/plain;base64,cm9vdDp4OjA6MA==")]
fn test_path_traversal_attacks(#[case] path_attack: &str) {
let mut steel_decimal = SteelDecimal::new();
// Should treat as normal variable name, not file path
steel_decimal.add_variable(path_attack.to_string(), "42".to_string());
let expr = format!("(+ ${} 1)", path_attack);
let transformed = steel_decimal.transform(&expr);
// Should treat as variable reference, not attempt file access
assert!(transformed.contains("get-var"));
assert!(transformed.contains(path_attack));
}
// Test XML/HTML injection through variable values
#[rstest]
#[case("<xml><malicious>content</malicious></xml>")]
#[case("<!DOCTYPE html><script>alert('xss')</script>")]
#[case("<?xml version=\"1.0\"?><!DOCTYPE root [<!ENTITY test SYSTEM 'file:///etc/passwd'>]>")]
fn test_xml_html_injection(#[case] xml_attack: &str) {
let mut steel_decimal = SteelDecimal::new();
// Should treat as string value, not parse as XML/HTML
steel_decimal.add_variable("test_var".to_string(), xml_attack.to_string());
let vars = steel_decimal.get_variables();
assert_eq!(vars.get("test_var").unwrap(), xml_attack);
// Should not interpret as markup
assert!(!xml_attack.is_empty()); // Basic sanity check
}
// Test deserialization attacks
#[rstest]
fn test_deserialization_attacks() {
// Test with serialized data that might trigger deserialization vulnerabilities
let malicious_serialized = vec![
"rO0ABXNyABFqYXZhLnV0aWwuSGFzaE1hcAUH2sHDFmDRAwACRgAKbG9hZEZhY3RvckkACXRocmVzaG9sZHhwP0AAAAAAAAx3CAAAABAAAAABdAABYXQAAWJ4",
"AC ED 00 05 73 72",
"pickle\\x80\\x03]q\\x00.",
];
for payload in malicious_serialized {
// Should treat as regular string, not attempt deserialization
let result = to_decimal(payload.to_string());
assert!(result.is_err(), "Serialized payload should not be valid decimal");
let mut steel_decimal = SteelDecimal::new();
steel_decimal.add_variable("payload".to_string(), payload.to_string());
// Should store as string value
assert_eq!(steel_decimal.get_variables().get("payload").unwrap(), payload);
}
}
// Test timing attacks
#[rstest]
fn test_timing_attack_resistance() {
// Test that comparison operations don't leak information through timing
let values = vec!["1", "1.0", "1.00", "1.000"];
let mut times = Vec::new();
for value in values {
let start = std::time::Instant::now();
let _ = decimal_eq(value.to_string(), "1".to_string());
let duration = start.elapsed();
times.push(duration);
}
// Times should be relatively similar (not vulnerable to timing attacks)
let max_time = times.iter().max().unwrap();
let min_time = times.iter().min().unwrap();
let ratio = max_time.as_nanos() as f64 / min_time.as_nanos() as f64;
// Allow for reasonable variance but not massive differences
assert!(ratio < 10.0, "Timing attack vulnerability detected: ratio = {}", ratio);
}